IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3128-d516077.html
   My bibliography  Save this article

Gaseous Nitrogen Losses from Tropical Soils with Liquid or Granular Urea Fertilizer Application

Author

Listed:
  • Ahmmed Md Motasim

    (Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Abd Wahid Samsuri

    (Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Arina Shairah Abdul Sukor

    (Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia)

  • Amin Mohd Adibah

    (Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia)

Abstract

Gaseous loss of N leads to lower nitrogen use efficiency (NUE) of applied urea and N content of the soil. This laboratory study was conducted to compare the nitrogen losses from two tropical soil series (Bungor sandy clay loam and Selangor clay) incubated with either liquid urea (LU) or granular urea (GU) at 0, 300, 400, or 500 mg/kg of soil for thirty days. The NH 3 volatilization, N 2 O emission, and N content in the soils were measured throughout the incubation period. For the same application rate, the total NH 3 volatilization loss was higher in GU-treated soils than the LU-treated soils. NH 3 volatilization loss continued up to the 15th day in the Selangor soil, while in the Bungor soil series it continued up to the 26th day. Higher amounts of N 2 O emissions were recorded in GU-treated soils than the LU-treated soils, and N 2 O emission increased with increasing rate of GU and LU applications in both soils. The N 2 O emission was higher only in the first few days and then tapered off at the seventh and eighth day in Bungor and Selangor soil series, respectively. The total N 2 O emission was higher in the Selangor soil series than that of Bungor soil series. The total N content that remained in the LU-treated soils after 30 days of incubation was higher than the GU-treated soils. The total N loss from applied urea was higher in the sandy clay loam Bungor soils than that of clayey Selangor soil series. The results suggest that the LU may be a better N fertilizer source than GU due to lower N loss from NH 3 volatilization and N 2 O emission.

Suggested Citation

  • Ahmmed Md Motasim & Abd Wahid Samsuri & Arina Shairah Abdul Sukor & Amin Mohd Adibah, 2021. "Gaseous Nitrogen Losses from Tropical Soils with Liquid or Granular Urea Fertilizer Application," Sustainability, MDPI, vol. 13(6), pages 1-11, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3128-:d:516077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3128/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3128/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark A. Sutton & Oene Oenema & Jan Willem Erisman & Adrian Leip & Hans van Grinsven & Wilfried Winiwarter, 2011. "Too much of a good thing," Nature, Nature, vol. 472(7342), pages 159-161, April.
    2. Wu, Hanqing & Du, Shiyu & Zhang, Yuling & An, Jing & Zou, Hongtao & Zhang, Yulong & Yu, Na, 2019. "Effects of irrigation and nitrogen fertilization on greenhouse soil organic nitrogen fractions and soil-soluble nitrogen pools," Agricultural Water Management, Elsevier, vol. 216(C), pages 415-424.
    3. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    4. Dave S. Reay & Eric A. Davidson & Keith A. Smith & Pete Smith & Jerry M. Melillo & Frank Dentener & Paul J. Crutzen, 2012. "Global agriculture and nitrous oxide emissions," Nature Climate Change, Nature, vol. 2(6), pages 410-416, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmmed Md Motasim & Abd Wahid Samsuri & Arina Shairah Abdul Sukor & Amin Mohd Adibah, 2021. "Nitrogen Dynamics in Tropical Soils Treated with Liquid and Granular Urea Fertilizers," Agriculture, MDPI, vol. 11(6), pages 1-12, June.
    2. Ayman El-Ghamry & El-Sayed El-Naggar & Abdallah M. Elgorban & Bin Gao & Zahoor Ahmad & Ahmed Mosa, 2021. "Double Coating as a Novel Technology for Controlling Urea Dissolution in Soil: A Step toward Improving the Sustainability of Nitrogen Fertilization Approaches," Sustainability, MDPI, vol. 13(19), pages 1-13, September.
    3. Paulina Bogusz & Piotr Rusek & Marzena S. Brodowska, 2021. "Suspension Fertilizers: How to Reconcile Sustainable Fertilization and Environmental Protection," Agriculture, MDPI, vol. 11(10), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yusuf Nadi Karatay & Andreas Meyer-Aurich, 2018. "A Model Approach for Yield-Zone-Specific Cost Estimation of Greenhouse Gas Mitigation by Nitrogen Fertilizer Reduction," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    2. Andreas Meyer-Aurich & Yusuf Nadi Karatay, 2022. "Greenhouse Gas Mitigation Costs of Reduced Nitrogen Fertilizer," Agriculture, MDPI, vol. 12(9), pages 1-13, September.
    3. Zhu, Wei & Qi, Lixia & Wang, Ruime, 2021. "Impact of Market Price Support Measures on Chemical Fertilizer Use in China," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 9(1), January.
    4. Chapagain, Ranju & Huth, Neil & Remenyi, Tomas A. & Mohammed, Caroline L. & Ojeda, Jonathan J., 2023. "Assessing the effect of using different APSIM model configurations on model outputs," Ecological Modelling, Elsevier, vol. 483(C).
    5. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    6. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    7. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    8. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    9. Jiamin Liu & Xiaoyu Ma & Bin Zhao & Qi Cui & Sisi Zhang & Jiaoning Zhang, 2023. "Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
    10. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    11. Otavio Ananias Pereira da Silva & Dayane Bortoloto da Silva & Marcelo Carvalho Minhoto Teixeira-Filho & Tays Batista Silva & Cid Naudi Silva Campos & Fabio Henrique Rojo Baio & Gileno Brito de Azevedo, 2023. "Macro- and Micronutrient Contents and Their Relationship with Growth in Six Eucalyptus Species," Sustainability, MDPI, vol. 15(22), pages 1-12, November.
    12. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    13. Meyer-Aurich, Andreas & Karatay, Yusuf Nadi, 2019. "Effects of uncertainty and farmers' risk aversion on optimal N fertilizer supply in wheat production in Germany," Agricultural Systems, Elsevier, vol. 173(C), pages 130-139.
    14. Anna Lungarska & Thierry Brunelle & Raja Chakir & Pierre‐Alain Jayet & Rémi Prudhomme & Stéphane De Cara & Jean‐Christophe Bureau, 2023. "Halving mineral nitrogen use in European agriculture: Insights from multi‐scale land‐use models," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1529-1550, September.
    15. Felizitas Winkhart & Thomas Mösl & Harald Schmid & Kurt-Jürgen Hülsbergen, 2022. "Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions," Agriculture, MDPI, vol. 12(7), pages 1-30, June.
    16. Jiuliang Xu & Liangquan Wu & Bingxin Tong & Jiaxu Yin & Zican Huang & Wei Li & Xuexian Li, 2021. "Magnesium Supplementation Alters Leaf Metabolic Pathways for Higher Flavor Quality of Oolong Tea," Agriculture, MDPI, vol. 11(2), pages 1-12, February.
    17. Simon Anastasiadis & Marie-Laure Nauleau & Suzi Kerr & Tim Cox & Kit Rutherford, 2011. "Does Complex Hydrology Require Complex Water Quality Policy? NManager Simulations for Lake Rotorua," Working Papers 11_14, Motu Economic and Public Policy Research.
    18. Stafford, William & Birch, Catherine & Etter, Hannes & Blanchard, Ryan & Mudavanhu, Shepherd & Angelstam, Per & Blignaut, James & Ferreira, Louwrens & Marais, Christo, 2017. "The economics of landscape restoration: Benefits of controlling bush encroachment and invasive plant species in South Africa and Namibia," Ecosystem Services, Elsevier, vol. 27(PB), pages 193-202.
    19. Guofeng Wang & Pu Liu & Jinmiao Hu & Fan Zhang, 2022. "Agriculture-Induced N 2 O Emissions and Reduction Strategies in China," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    20. Ledgard, Stewart F. & Wei, Sha & Wang, Xiaoqin & Falconer, Shelley & Zhang, Nannan & Zhang, Xiying & Ma, Lin, 2019. "Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations," Agricultural Water Management, Elsevier, vol. 213(C), pages 155-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3128-:d:516077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.