IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2417-d504667.html
   My bibliography  Save this article

Indoor and Outdoor Air Quality for Sustainable Life: A Case Study of Rural and Urban Settlements in Poor Neighbourhoods in Kenya

Author

Listed:
  • Anne Wambui Mutahi

    (Chemistry for Technologies Laboratory, INSTM and Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy)

  • Laura Borgese

    (Chemistry for Technologies Laboratory, INSTM and Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
    SMART Solutions s.r.l., 25124 Brescia, Italy)

  • Claudio Marchesi

    (Chemistry for Technologies Laboratory, INSTM and Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy)

  • Michael J. Gatari

    (Institute of Nuclear Science and Technology, University of Nairobi, Nairobi 00100, Kenya)

  • Laura E. Depero

    (Chemistry for Technologies Laboratory, INSTM and Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
    SMART Solutions s.r.l., 25124 Brescia, Italy)

Abstract

This paper reports on the indoor and outdoor air quality in informal urban and rural settlements in Kenya. The study is motivated by the need to improve consciousness and to understand the harmful health effects of air quality to vulnerable people, especially in poor communities. Ng’ando urban informal settlement and Leshau Pondo rural village in Kenya are selected as representative poor neighborhoods where unclean energy sources are used indoor for cooking, lighting and heating. Filter based sampling for gravimetrical, elemental composition and black carbon (BC) analysis of particulate matter with an aerodynamic diameter less than 2.5 µm (PM 2.5 ) is performed. findings from Ng’ando and Leshau Pondo showed levels exceeding the limit suggested by the world health organization (WHO), with rare exceptions. Significantly higher levels of PM 2.5 and black carbon are observed in indoors than outdoor samples, with a differences in the orders of magnitudes and up to 1000 µg/m 3 for PM 2.5 in rural settlements. The elemental composition reveals the presence of potentially toxic elements, in addition to characterization, emission sources were also identified. Levels of Pb exceeding the WHO limit are found in the majority of samples collected in the urban locations near major roads with heavy traffic. Our results demonstrate that most of the households live in deplorable air quality conditions for more than 12 h a day and women and children are more affected. Air quality condition is much worse in rural settlements where wood and kerosene are the only available fuels for their energy needs.

Suggested Citation

  • Anne Wambui Mutahi & Laura Borgese & Claudio Marchesi & Michael J. Gatari & Laura E. Depero, 2021. "Indoor and Outdoor Air Quality for Sustainable Life: A Case Study of Rural and Urban Settlements in Poor Neighbourhoods in Kenya," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2417-:d:504667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2417/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gyami Shrestha & Samuel J. Traina & Christopher W. Swanston, 2010. "Black Carbon’s Properties and Role in the Environment: A Comprehensive Review," Sustainability, MDPI, vol. 2(1), pages 1-27, January.
    2. Teerachai Amnuaylojaroen & Jirarat Inkom & Radshadaporn Janta & Vanisa Surapipith, 2020. "Long Range Transport of Southeast Asian PM2.5 Pollution to Northern Thailand during High Biomass Burning Episodes," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilaria Marotta & Francesco Guarino & Sonia Longo & Maurizio Cellura, 2021. "Environmental Sustainability Approaches and Positive Energy Districts: A Literature Review," Sustainability, MDPI, vol. 13(23), pages 1-45, November.
    2. Yucheng He & Sanika Ravindra Nishandar & Rufus David Edwards & Marko Princevac, 2023. "Air Quality Modeling of Cooking Stove Emissions and Exposure Assessment in Rural Areas," Sustainability, MDPI, vol. 15(7), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    2. Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(S1), pages 72-87.
    3. Angelika Gryta & Kamil Skic & Agnieszka Adamczuk & Anna Skic & Magdalena Marciniak & Grzegorz Józefaciuk & Patrycja Boguta, 2023. "The Importance of the Targeted Design of Biochar Physicochemical Properties in Microbial Inoculation for Improved Agricultural Productivity—A Review," Agriculture, MDPI, vol. 14(1), pages 1-43, December.
    4. Mahlatse Kganyago & Lerato Shikwambana, 2019. "Assessing Spatio-Temporal Variability of Wildfires and their Impact on Sub-Saharan Ecosystems and Air Quality Using Multisource Remotely Sensed Data and Trend Analysis," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    5. Yessica Rivas & Jorge Retamal-Salgado & Heike Knicker & Francisco Matus & Diego Rivera, 2021. "Neutral Sugar Content and Composition as a Sensitive Indicator of Fire Severity in the Andisols of an Araucaria–Nothofagus Forest in Southern Chile," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
    6. Abid Hussain & Fahad N. Al-Barakah & Mohamed Al-Sewailem & Mohamed H. El-Saeid & Muhammad Waqar & Mahtab Ahmad, 2017. "Oxidative Photodegradation of Pyrene and Fluoranthene by Fe-Based and Zn-Based Fenton Reagents," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    7. Szu-Cheng Lu & Keh-Chin Chang & Wei-Min Lin & Kung-Ming Chung, 2015. "Energy Usage of Residents on Offshore Islands in Taiwan," Sustainability, MDPI, vol. 7(6), pages 1-13, May.
    8. Elisabeth Alonso-Blanco & Francisco Javier Gómez-Moreno & Elías Díaz-Ramiro & Marcos Barreiro & Javier Fernández & Ibai Figuero & Alejandro Rubio-Juan & Jesús Miguel Santamaría & Begoña Artíñano, 2024. "Indoor Air Quality at an Urban Primary School in Madrid (Spain): Influence of Surrounding Environment and Occupancy," IJERPH, MDPI, vol. 21(10), pages 1-22, September.
    9. Qambrani, Naveed Ahmed & Rahman, Md. Mukhlesur & Won, Seunggun & Shim, Soomin & Ra, Changsix, 2017. "Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 255-273.
    10. Polina Kuryntseva & Kamalya Karamova & Polina Galitskaya & Svetlana Selivanovskaya & Gennady Evtugyn, 2023. "Biochar Functions in Soil Depending on Feedstock and Pyrolyzation Properties with Particular Emphasis on Biological Properties," Agriculture, MDPI, vol. 13(10), pages 1-39, October.
    11. Songping Luo & Binghui He & Dandan Song & Tianyang Li & Yaopeng Wu & Lei Yang, 2020. "Response of Bacterial Community Structure to Different Biochar Addition Dosages in Karst Yellow Soil Planted with Ryegrass and Daylily," Sustainability, MDPI, vol. 12(5), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2417-:d:504667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.