IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v21y2024i10p1263-d1484146.html
   My bibliography  Save this article

Indoor Air Quality at an Urban Primary School in Madrid (Spain): Influence of Surrounding Environment and Occupancy

Author

Listed:
  • Elisabeth Alonso-Blanco

    (Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain)

  • Francisco Javier Gómez-Moreno

    (Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain)

  • Elías Díaz-Ramiro

    (Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain)

  • Marcos Barreiro

    (Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain)

  • Javier Fernández

    (Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain)

  • Ibai Figuero

    (Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain)

  • Alejandro Rubio-Juan

    (Regional Center for Animal Selection and Reproduction (CERSYRA), Ministry of Agriculture and Environment of Castilla-La Mancha, Avenida del Vino, 2, 13300 Valdepeñas, Spain)

  • Jesús Miguel Santamaría

    (Biodiversity and Environment Institute (BIOMA), Universidad de Navarra, Irunlarrea No. 1, 31008 Pamplona, Spain)

  • Begoña Artíñano

    (Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain)

Abstract

Monitoring indoor air quality (IAQ) in schools is critical because children spend most of their daytime inside. One of the main air pollutant sources in urban areas is road traffic, which greatly influences air quality. Thus, this study addresses, in depth, the linkages of meteorology, ambient air pollution, and indoor activities with IAQ in a traffic-influenced school situated south of Madrid. The measurement period was from 22 November to 21 December 2017. Simultaneous measurements of indoor and outdoor PM 1 , PM 2.5 , and PM 10 mass concentrations, ultrafine particle number concentration (PNC) and equivalent black carbon (eBC) were analyzed under different meteorological conditions. PNC and eBC outdoor concentrations and their temporal trend were similar among the sampling points, with all sites being influenced in the same way by traffic emissions. Strong correlations were found between indoor and outdoor concentrations, indicating that indoor pollution levels were significantly affected by outdoor sources. Especially, PNC and eBC had the same indoor/outdoor (I/O) trend, but indoor concentrations were lower. The time delay in indoor vs. outdoor concentrations varied between 0.5 and 2 h, depending on wind speed. Significant differences were found between different meteorological conditions (ANOVA p -values < 2.14 × 10 −6 ). Atmospheric stability periods led to an increase in indoor and outdoor pollutant levels. However, the highest I/O ratios were found during atmospheric instability, especially for eBC (an average of 1.2). This might be related to rapid changes in the outdoor air concentrations induced by meteorology. Significant variations were observed in indoor PM 10 concentrations during classroom occupancy (up to 230 µg m −3 ) vs. non-occupancy (up to 19 µg m −3 ) days, finding levels higher than outdoor ones. This was attributed to the scholarly activities in the classroom. Conversely, PNC and eBC concentrations only increased when the windows of the classroom were open. These findings have helped to establish practical recommendations and measures for improving the IAQ in this school and those of similar characteristics.

Suggested Citation

  • Elisabeth Alonso-Blanco & Francisco Javier Gómez-Moreno & Elías Díaz-Ramiro & Marcos Barreiro & Javier Fernández & Ibai Figuero & Alejandro Rubio-Juan & Jesús Miguel Santamaría & Begoña Artíñano, 2024. "Indoor Air Quality at an Urban Primary School in Madrid (Spain): Influence of Surrounding Environment and Occupancy," IJERPH, MDPI, vol. 21(10), pages 1-22, September.
  • Handle: RePEc:gam:jijerp:v:21:y:2024:i:10:p:1263-:d:1484146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/21/10/1263/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/21/10/1263/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gyami Shrestha & Samuel J. Traina & Christopher W. Swanston, 2010. "Black Carbon’s Properties and Role in the Environment: A Comprehensive Review," Sustainability, MDPI, vol. 2(1), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    2. Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(S1), pages 72-87.
    3. Angelika Gryta & Kamil Skic & Agnieszka Adamczuk & Anna Skic & Magdalena Marciniak & Grzegorz Józefaciuk & Patrycja Boguta, 2023. "The Importance of the Targeted Design of Biochar Physicochemical Properties in Microbial Inoculation for Improved Agricultural Productivity—A Review," Agriculture, MDPI, vol. 14(1), pages 1-43, December.
    4. Anne Wambui Mutahi & Laura Borgese & Claudio Marchesi & Michael J. Gatari & Laura E. Depero, 2021. "Indoor and Outdoor Air Quality for Sustainable Life: A Case Study of Rural and Urban Settlements in Poor Neighbourhoods in Kenya," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    5. Mahlatse Kganyago & Lerato Shikwambana, 2019. "Assessing Spatio-Temporal Variability of Wildfires and their Impact on Sub-Saharan Ecosystems and Air Quality Using Multisource Remotely Sensed Data and Trend Analysis," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    6. Yessica Rivas & Jorge Retamal-Salgado & Heike Knicker & Francisco Matus & Diego Rivera, 2021. "Neutral Sugar Content and Composition as a Sensitive Indicator of Fire Severity in the Andisols of an Araucaria–Nothofagus Forest in Southern Chile," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
    7. Abid Hussain & Fahad N. Al-Barakah & Mohamed Al-Sewailem & Mohamed H. El-Saeid & Muhammad Waqar & Mahtab Ahmad, 2017. "Oxidative Photodegradation of Pyrene and Fluoranthene by Fe-Based and Zn-Based Fenton Reagents," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    8. Szu-Cheng Lu & Keh-Chin Chang & Wei-Min Lin & Kung-Ming Chung, 2015. "Energy Usage of Residents on Offshore Islands in Taiwan," Sustainability, MDPI, vol. 7(6), pages 1-13, May.
    9. Qambrani, Naveed Ahmed & Rahman, Md. Mukhlesur & Won, Seunggun & Shim, Soomin & Ra, Changsix, 2017. "Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 255-273.
    10. Polina Kuryntseva & Kamalya Karamova & Polina Galitskaya & Svetlana Selivanovskaya & Gennady Evtugyn, 2023. "Biochar Functions in Soil Depending on Feedstock and Pyrolyzation Properties with Particular Emphasis on Biological Properties," Agriculture, MDPI, vol. 13(10), pages 1-39, October.
    11. Songping Luo & Binghui He & Dandan Song & Tianyang Li & Yaopeng Wu & Lei Yang, 2020. "Response of Bacterial Community Structure to Different Biochar Addition Dosages in Karst Yellow Soil Planted with Ryegrass and Daylily," Sustainability, MDPI, vol. 12(5), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:21:y:2024:i:10:p:1263-:d:1484146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.