IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p2124-d330455.html
   My bibliography  Save this article

Response of Bacterial Community Structure to Different Biochar Addition Dosages in Karst Yellow Soil Planted with Ryegrass and Daylily

Author

Listed:
  • Songping Luo

    (College of Resources and Environment, Southwest University, Chongqing 400715, China
    Guizhou Technology Consulting Research Center of Soil and Water Conservation, Guiyang 550002, China)

  • Binghui He

    (College of Resources and Environment, Southwest University, Chongqing 400715, China)

  • Dandan Song

    (College of Resources and Environment, Southwest University, Chongqing 400715, China)

  • Tianyang Li

    (College of Resources and Environment, Southwest University, Chongqing 400715, China)

  • Yaopeng Wu

    (College of Resources and Environment, Southwest University, Chongqing 400715, China)

  • Lei Yang

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

Abstract

Biochar has been widely used to ameliorate soil quality and increase crop productivity through enhancement of nutrient availability and microbial community. The Karst yellow soil in China is characterized by severe soil degradation owing to intensive nutrient leaching. However, the biochar addition effects on the changes of Karst yellow soil are unclear, and the adequate number of biochar dosages to explain optimum of plant growth in this soil area remains poorly understood. In this study, pot experiments were conducted to examine the effects of biochar addition (1%, 3%, 5%, 7%, and 9% by weight; 0% as a control) on bacterial abundance and community structure via high-throughput sequencing coupled with bioinformatics methods applied to Karst yellow soil with planting ryegrass ( Lolium perenne L. ) and daylily ( Hemerocallis fulva ). After adding biochar for 188 days, significantly increased pH, soil organic matter, total nutrient contents, and bacterial abundance, but decreased available nitrogen, were observed. Changed bacterial community structures were found in biochar treatments compared with those without biochar. In both soils of planted ryegrass and daylily, the optimum soil bacterial abundance was found in 7% biochar dosage, but the lowest values were in the controls (0%). Taxonomic analysis identified that Micrococcaceae (24.53%), Oxalobacteraceae (11.87%), and Nocardioidaceae (7.89%) were the dominant family in the soil of ryegrass growth, and Micrococcaceae (16.20%), Xanthomonadaceae (6.94%), and Nocardioidaceae (6.41%) were the dominant family in soil of daylily growth. Canonical correspondence analysis showed that the alterations of soil bacterial abundance and community were highly interrelated with soil chemical properties. The results provided a better understanding of the mechanisms underlying the plant-soil microbe interactions and their responses to biochar dosages in low fertility soil regions.

Suggested Citation

  • Songping Luo & Binghui He & Dandan Song & Tianyang Li & Yaopeng Wu & Lei Yang, 2020. "Response of Bacterial Community Structure to Different Biochar Addition Dosages in Karst Yellow Soil Planted with Ryegrass and Daylily," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2124-:d:330455
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/2124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/2124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gyami Shrestha & Samuel J. Traina & Christopher W. Swanston, 2010. "Black Carbon’s Properties and Role in the Environment: A Comprehensive Review," Sustainability, MDPI, vol. 2(1), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Cong & Huang, Xian & Zhang, Xingwei & Wan, Li & Wang, Zhenhong, 2021. "Effects of biochar application on soil nitrogen and phosphorous leaching loss and oil peony growth," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Sokkeang Be & Soydoa Vinitnantharat & Anawat Pinisakul, 2021. "Effect of Mangrove Biochar Residue Amended Shrimp Pond Sediment on Nitrogen Adsorption and Leaching," Sustainability, MDPI, vol. 13(13), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    2. Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(S1), pages 72-87.
    3. Angelika Gryta & Kamil Skic & Agnieszka Adamczuk & Anna Skic & Magdalena Marciniak & Grzegorz Józefaciuk & Patrycja Boguta, 2023. "The Importance of the Targeted Design of Biochar Physicochemical Properties in Microbial Inoculation for Improved Agricultural Productivity—A Review," Agriculture, MDPI, vol. 14(1), pages 1-43, December.
    4. Anne Wambui Mutahi & Laura Borgese & Claudio Marchesi & Michael J. Gatari & Laura E. Depero, 2021. "Indoor and Outdoor Air Quality for Sustainable Life: A Case Study of Rural and Urban Settlements in Poor Neighbourhoods in Kenya," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    5. Mahlatse Kganyago & Lerato Shikwambana, 2019. "Assessing Spatio-Temporal Variability of Wildfires and their Impact on Sub-Saharan Ecosystems and Air Quality Using Multisource Remotely Sensed Data and Trend Analysis," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    6. Yessica Rivas & Jorge Retamal-Salgado & Heike Knicker & Francisco Matus & Diego Rivera, 2021. "Neutral Sugar Content and Composition as a Sensitive Indicator of Fire Severity in the Andisols of an Araucaria–Nothofagus Forest in Southern Chile," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
    7. Abid Hussain & Fahad N. Al-Barakah & Mohamed Al-Sewailem & Mohamed H. El-Saeid & Muhammad Waqar & Mahtab Ahmad, 2017. "Oxidative Photodegradation of Pyrene and Fluoranthene by Fe-Based and Zn-Based Fenton Reagents," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    8. Szu-Cheng Lu & Keh-Chin Chang & Wei-Min Lin & Kung-Ming Chung, 2015. "Energy Usage of Residents on Offshore Islands in Taiwan," Sustainability, MDPI, vol. 7(6), pages 1-13, May.
    9. Elisabeth Alonso-Blanco & Francisco Javier Gómez-Moreno & Elías Díaz-Ramiro & Marcos Barreiro & Javier Fernández & Ibai Figuero & Alejandro Rubio-Juan & Jesús Miguel Santamaría & Begoña Artíñano, 2024. "Indoor Air Quality at an Urban Primary School in Madrid (Spain): Influence of Surrounding Environment and Occupancy," IJERPH, MDPI, vol. 21(10), pages 1-22, September.
    10. Qambrani, Naveed Ahmed & Rahman, Md. Mukhlesur & Won, Seunggun & Shim, Soomin & Ra, Changsix, 2017. "Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 255-273.
    11. Polina Kuryntseva & Kamalya Karamova & Polina Galitskaya & Svetlana Selivanovskaya & Gennady Evtugyn, 2023. "Biochar Functions in Soil Depending on Feedstock and Pyrolyzation Properties with Particular Emphasis on Biological Properties," Agriculture, MDPI, vol. 13(10), pages 1-39, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2124-:d:330455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.