IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i4p1748-d1594832.html
   My bibliography  Save this article

Biochar-Induced Microbial Shifts: Advancing Soil Sustainability

Author

Listed:
  • Meesha Sharma

    (Department of Environmental Studies, University of Delhi, Delhi 110007, India)

  • Rishabh Kaushik

    (Jealott’s Hill International Research Centre, Warfield, Bracknell RG42 6EY, UK)

  • Maharaj K. Pandit

    (Residential College 4, National University of Singapore, 6 College Avenue East, Singapore 138614, Singapore)

  • Yi-Hsuan Lee

    (Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
    Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DA, UK)

Abstract

Biochar utilisation as a soil enhancer has gathered considerable interest owing to its notable capacity to boost soil productivity, enhance carbon sequestration, and improve agricultural sustainability. Nonetheless, how biochar affects the soil microbiome, a key to soil health and ecological functioning, remains a contested subject. Given the critical role microbial communities play in maintaining soil health and functioning, variations in soil microbiota may have a substantial impact on soil fertility and stability. Despite a wealth of studies on the effects of biochar on soil microbial communities, the results demonstrate that the reaction of the microbiome to biochar varies greatly depending on the edaphic and biochar properties and other factors such as the experimental conditions and agricultural practices. Notably, different components of the soil microbiome may respond to soil/biochar properties in a unique way, which makes generalising the impacts of biochar on the soil microbiome a difficult task. In this review, we comprehensively examine the factors governing the impacts of biochar on the soil microbiome, especially in terms of its repercussions on microbial diversity, community structure, and functional dynamics, and the potential ramifications for agricultural productivity and environmental sustainability.

Suggested Citation

  • Meesha Sharma & Rishabh Kaushik & Maharaj K. Pandit & Yi-Hsuan Lee, 2025. "Biochar-Induced Microbial Shifts: Advancing Soil Sustainability," Sustainability, MDPI, vol. 17(4), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1748-:d:1594832
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/4/1748/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/4/1748/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sébastien Terrat & Walid Horrigue & Samuel Dequietd & Nicolas P A Saby & Mélanie Lelièvre & Virginie Nowak & Julie Tripied & Tiffanie Régnier & Claudy Jolivet & Dominique Arrouays & Patrick Wincker & , 2017. "Mapping and predictive variations of soil bacterial richness across France," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-19, October.
    2. Angelika Gryta & Kamil Skic & Agnieszka Adamczuk & Anna Skic & Magdalena Marciniak & Grzegorz Józefaciuk & Patrycja Boguta, 2023. "The Importance of the Targeted Design of Biochar Physicochemical Properties in Microbial Inoculation for Improved Agricultural Productivity—A Review," Agriculture, MDPI, vol. 14(1), pages 1-43, December.
    3. Gyami Shrestha & Samuel J. Traina & Christopher W. Swanston, 2010. "Black Carbon’s Properties and Role in the Environment: A Comprehensive Review," Sustainability, MDPI, vol. 2(1), pages 1-27, January.
    4. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    2. Irina Gabriela Cara & Denis Țopa & Ioan Puiu & Gerard Jităreanu, 2022. "Biochar a Promising Strategy for Pesticide-Contaminated Soils," Agriculture, MDPI, vol. 12(10), pages 1-21, September.
    3. Powlson, D.S. & Gregory, P.J. & Whalley, W.R. & Quinton, J.N. & Hopkins, D.W. & Whitmore, A.P. & Hirsch, P.R. & Goulding, K.W.T., 2011. "Soil management in relation to sustainable agriculture and ecosystem services," Food Policy, Elsevier, vol. 36(S1), pages 72-87.
    4. Angelika Gryta & Kamil Skic & Agnieszka Adamczuk & Anna Skic & Magdalena Marciniak & Grzegorz Józefaciuk & Patrycja Boguta, 2023. "The Importance of the Targeted Design of Biochar Physicochemical Properties in Microbial Inoculation for Improved Agricultural Productivity—A Review," Agriculture, MDPI, vol. 14(1), pages 1-43, December.
    5. Anne C. Richer-de-Forges & Dominique Arrouays & Marion Bardy & Antonio Bispo & Philippe Lagacherie & Bertrand Laroche & Blandine Lemercier & Joëlle Sauter & Marc Voltz, 2019. "Mapping of Soils and Land-Related Environmental Attributes in France: Analysis of End-Users’ Needs," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    6. Anne Wambui Mutahi & Laura Borgese & Claudio Marchesi & Michael J. Gatari & Laura E. Depero, 2021. "Indoor and Outdoor Air Quality for Sustainable Life: A Case Study of Rural and Urban Settlements in Poor Neighbourhoods in Kenya," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    7. Mahlatse Kganyago & Lerato Shikwambana, 2019. "Assessing Spatio-Temporal Variability of Wildfires and their Impact on Sub-Saharan Ecosystems and Air Quality Using Multisource Remotely Sensed Data and Trend Analysis," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    8. Maëva Labouyrie & Cristiano Ballabio & Ferran Romero & Panos Panagos & Arwyn Jones & Marc W. Schmid & Vladimir Mikryukov & Olesya Dulya & Leho Tedersoo & Mohammad Bahram & Emanuele Lugato & Marcel G. , 2023. "Patterns in soil microbial diversity across Europe," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    9. Yessica Rivas & Jorge Retamal-Salgado & Heike Knicker & Francisco Matus & Diego Rivera, 2021. "Neutral Sugar Content and Composition as a Sensitive Indicator of Fire Severity in the Andisols of an Araucaria–Nothofagus Forest in Southern Chile," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
    10. Agampodi Gihan S. D. De Silva & Z K. Hashim & Wogene Solomon & Jun-Bin Zhao & Györgyi Kovács & István M. Kulmány & Zoltán Molnár, 2024. "Unveiling the Role of Edaphic Microalgae in Soil Carbon Sequestration: Potential for Agricultural Inoculants in Climate Change Mitigation," Agriculture, MDPI, vol. 14(11), pages 1-33, November.
    11. Abid Hussain & Fahad N. Al-Barakah & Mohamed Al-Sewailem & Mohamed H. El-Saeid & Muhammad Waqar & Mahtab Ahmad, 2017. "Oxidative Photodegradation of Pyrene and Fluoranthene by Fe-Based and Zn-Based Fenton Reagents," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    12. Szu-Cheng Lu & Keh-Chin Chang & Wei-Min Lin & Kung-Ming Chung, 2015. "Energy Usage of Residents on Offshore Islands in Taiwan," Sustainability, MDPI, vol. 7(6), pages 1-13, May.
    13. Elisabeth Alonso-Blanco & Francisco Javier Gómez-Moreno & Elías Díaz-Ramiro & Marcos Barreiro & Javier Fernández & Ibai Figuero & Alejandro Rubio-Juan & Jesús Miguel Santamaría & Begoña Artíñano, 2024. "Indoor Air Quality at an Urban Primary School in Madrid (Spain): Influence of Surrounding Environment and Occupancy," IJERPH, MDPI, vol. 21(10), pages 1-22, September.
    14. Ahmed Mosa & Mostafa M. Mansour & Enas Soliman & Ayman El-Ghamry & Mohamed El Alfy & Ahmed M. El Kenawy, 2023. "Biochar as a Soil Amendment for Restraining Greenhouse Gases Emission and Improving Soil Carbon Sink: Current Situation and Ways Forward," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    15. Qambrani, Naveed Ahmed & Rahman, Md. Mukhlesur & Won, Seunggun & Shim, Soomin & Ra, Changsix, 2017. "Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 255-273.
    16. Polina Kuryntseva & Kamalya Karamova & Polina Galitskaya & Svetlana Selivanovskaya & Gennady Evtugyn, 2023. "Biochar Functions in Soil Depending on Feedstock and Pyrolyzation Properties with Particular Emphasis on Biological Properties," Agriculture, MDPI, vol. 13(10), pages 1-39, October.
    17. Songping Luo & Binghui He & Dandan Song & Tianyang Li & Yaopeng Wu & Lei Yang, 2020. "Response of Bacterial Community Structure to Different Biochar Addition Dosages in Karst Yellow Soil Planted with Ryegrass and Daylily," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    18. Xiyuan Wu & Lizhi Wang & Juan An & Yun Wang & Hongli Song & Yuanzhi Wu & Qianjin Liu, 2022. "Relationship between Soil Organic Carbon, Soil Nutrients, and Land Use in Linyi City (East China)," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    19. Xia, Longlong & Chen, Wenhao & Lu, Bufan & Wang, Shanshan & Xiao, Lishan & Liu, Beibei & Yang, Hongqiang & Huang, Chu-Long & Wang, Hongtao & Yang, Yang & Lin, Litao & Zhu, Xiangdong & Chen, Wei-Qiang , 2023. "Climate mitigation potential of sustainable biochar production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1748-:d:1594832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.