IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1188-d485910.html
   My bibliography  Save this article

Nested Buildings: An Innovative Strategy for the Integrated Seismic and Energy Retrofit of Existing Masonry Buildings with CLT Panels

Author

Listed:
  • Maria Rosa Valluzzi

    (Department of Cultural Heritage, University of Padova, 35139 Padova, Italy)

  • Elisa Saler

    (Department of Geosciences, University of Padova, 35131 Padova, Italy)

  • Alberto Vignato

    (Department of Civil, Environmental, and Architectural Engineering, University of Padova, 35131 Padova, Italy)

  • Matteo Salvalaggio

    (Department of Cultural Heritage, University of Padova, 35139 Padova, Italy)

  • Giorgio Croatto

    (Department of Civil, Environmental, and Architectural Engineering, University of Padova, 35131 Padova, Italy)

  • Giorgia Dorigatti

    (Department of Civil, Environmental, and Architectural Engineering, University of Padova, 35131 Padova, Italy)

  • Umberto Turrini

    (Department of Civil, Environmental, and Architectural Engineering, University of Padova, 35131 Padova, Italy)

Abstract

The Italian building heritage is aged and inadequate to the high-performance levels required nowadays in terms of energy efficiency and seismic response. Innovative techniques are generating a strong interest, especially in terms of multi-level approaches and solution optimizations. Among these, Nested Buildings, an integrated intervention approach which preserves the external existing structure and provides a new structural system inside, aim at improving both energy and structural performances. The research presented hereinafter focuses on the strengthening of unreinforced masonry (URM) buildings with cross-laminated timber (CLT) panels, thanks to their lightweight, high stiffness, and good hygrothermal characteristics. The improvement of the hygrothermal performance was investigated through a 2D-model analyzed in the dynamic regime, which showed a general decreasing in the overall thermal transmittance for the retrofitted configurations. Then, to evaluate the seismic behavior of the coupled system, a parametric linear static analysis was implemented for both in-plane and out-of-plane directions, considering various masonry types and connector spacings. Results showed the efficiency of the intervention to improve the in-plane response of walls, thus validating possible applications to existing URM buildings, where local overturning mechanisms are prevented by either sufficient construction details or specific solutions.

Suggested Citation

  • Maria Rosa Valluzzi & Elisa Saler & Alberto Vignato & Matteo Salvalaggio & Giorgio Croatto & Giorgia Dorigatti & Umberto Turrini, 2021. "Nested Buildings: An Innovative Strategy for the Integrated Seismic and Energy Retrofit of Existing Masonry Buildings with CLT Panels," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1188-:d:485910
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1188/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giuseppe Margani & Gianpiero Evola & Carola Tardo & Edoardo Michele Marino, 2020. "Energy, Seismic, and Architectural Renovation of RC Framed Buildings with Prefabricated Timber Panels," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Cassol & Maja Danovska & Alessandro Prada & Ivan Giongo, 2024. "Timber-Based Strategies for Seismic Collapse Prevention and Energy Performance Improvement in Masonry Buildings," Sustainability, MDPI, vol. 16(1), pages 1-20, January.
    2. Lucas Lopes & Luca Penazzato & Daniel C. Reis & Manuela Almeida & Daniel V. Oliveira & Paulo B. Lourenço, 2024. "A Holistic Modular Solution for Energy and Seismic Renovation of Buildings Based on 3D-Printed Thermoplastic Materials," Sustainability, MDPI, vol. 16(5), pages 1-28, March.
    3. Luca Sbrogiò & Carlotta Bevilacqua & Gabriele De Sordi & Ivano Michelotto & Marco Sbrogiò & Antonio Toniolo & Christian Tosato, 2021. "Strategies for Structural and Energy Improvement in Mid-Rise Unreinforced Masonry Apartment Buildings. A Case Study in Mestre (Northeast Italy)," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    4. Matteo Busselli & Davide Cassol & Alessandro Prada & Ivan Giongo, 2021. "Timber Based Integrated Techniques to Improve Energy Efficiency and Seismic Behaviour of Existing Masonry Buildings," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    5. Rayane de Lima Moura Paiva & Lucas Rosse Caldas & Adriana Paiva de Souza Martins & Patricia Brandão de Sousa & Giulia Fea de Oliveira & Romildo Dias Toledo Filho, 2021. "Thermal-Energy Analysis and Life Cycle GHG Emissions Assessments of Innovative Earth-Based Bamboo Plastering Mortars," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    6. Luka Lulić & Karlo Ožić & Tomislav Kišiček & Ivan Hafner & Mislav Stepinac, 2021. "Post-Earthquake Damage Assessment—Case Study of the Educational Building after the Zagreb Earthquake," Sustainability, MDPI, vol. 13(11), pages 1-25, June.
    7. Luca Penazzato & Rogiros Illampas & Daniel V. Oliveira, 2024. "The Challenge of Integrating Seismic and Energy Retrofitting of Buildings: An Opportunity for Sustainable Materials?," Sustainability, MDPI, vol. 16(8), pages 1-25, April.
    8. Dragos Bocan & Catalina Bocan & Alexandra Keller & Aurelian Gruin, 2024. "Analysis of Thermal Rehabilitation and Seismic Strengthening Solutions Suitable for Heritage Structures," Sustainability, MDPI, vol. 16(13), pages 1-17, June.
    9. Amedeo Caprino & Filippo Lorenzoni & Laura Carnieletto & Leonardo Feletto & Michele De Carli & Francesca da Porto, 2021. "Integrated Seismic and Energy Retrofit Interventions on a URM Masonry Building: The Case Study of the Former Courthouse in Fabriano," Sustainability, MDPI, vol. 13(17), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberta Pernetti & Riccardo Pinotti & Roberto Lollini, 2021. "Repository of Deep Renovation Packages Based on Industrialized Solutions: Definition and Application," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
    2. Luca Pozza & Anna Degli Esposti & Alessandra Bonoli & Diego Talledo & Luca Barbaresi & Giovanni Semprini & Marco Savoia, 2021. "Multidisciplinary Performance Assessment of an Eco-Sustainable RC-Framed Skin for the Integrated Upgrading of Existing Buildings," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    3. Antonio Artino & Riccardo Caponetto & Gianpiero Evola & Giuseppe Margani & Edoardo Michele Marino & Emanuele Murgano, 2020. "Decision Support System for the Sustainable Seismic and Energy Renovation of Buildings: Methodological Layout," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    4. Rayane de Lima Moura Paiva & Lucas Rosse Caldas & Adriana Paiva de Souza Martins & Patricia Brandão de Sousa & Giulia Fea de Oliveira & Romildo Dias Toledo Filho, 2021. "Thermal-Energy Analysis and Life Cycle GHG Emissions Assessments of Innovative Earth-Based Bamboo Plastering Mortars," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    5. Francesco Smiroldo & Isabella Paviani & Ivan Giongo & Stefano Zanon & Rossano Albatici & Maurizio Piazza, 2021. "An Integrated Approach to Improve Seismic and Energetic Behaviour of RC Framed Buildings Using Timber Panels," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    6. Amedeo Caprino & Filippo Lorenzoni & Laura Carnieletto & Leonardo Feletto & Michele De Carli & Francesca da Porto, 2021. "Integrated Seismic and Energy Retrofit Interventions on a URM Masonry Building: The Case Study of the Former Courthouse in Fabriano," Sustainability, MDPI, vol. 13(17), pages 1-30, August.
    7. Darija Gajić & Slobodan Peulić & Tim Mavrič & Anna Sandak & Črtomir Tavzes & Milica Malešević & Mladen Slijepčević, 2021. "Energy Retrofitting Opportunities Using Renewable Materials—Comparative Analysis of the Current Frameworks in Bosnia-Herzegovina and Slovenia," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    8. Gianpiero Evola & Vincenzo Costanzo & Luigi Marletta, 2021. "Hygrothermal and Acoustic Performance of Two Innovative Envelope Renovation Solutions Developed in the e-SAFE Project," Energies, MDPI, vol. 14(13), pages 1-19, July.
    9. Carlotta Pia Contiguglia & Angelo Pelle & Zhichao Lai & Bruno Briseghella & Camillo Nuti, 2021. "Chinese High Rise Reinforced Concrete Building Retrofitted with CLT Panels," Sustainability, MDPI, vol. 13(17), pages 1-15, August.
    10. Denisa Valachova & Andrea Badurova & Iveta Skotnicova, 2021. "Thermal Technical Analysis of Lightweight Timber-Based External Wall Structures with Ventilated Air Gap," Sustainability, MDPI, vol. 13(1), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1188-:d:485910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.