IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6412-d568972.html
   My bibliography  Save this article

Repository of Deep Renovation Packages Based on Industrialized Solutions: Definition and Application

Author

Listed:
  • Roberta Pernetti

    (Institute for Renewable Energy, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy
    Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy)

  • Riccardo Pinotti

    (Institute for Renewable Energy, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy)

  • Roberto Lollini

    (Institute for Renewable Energy, Eurac Research, Viale Druso 1, 39100 Bolzano, Italy)

Abstract

Renovation Wave aims to boost the uptake of deep renovation towards the CO 2 emission targets for 2030. In this perspective, there is the need of technologies and solution sets for improving the deep renovation process as well as demonstrating the performances for supporting the stakeholders in the decision-making process. To cope with the issue, this work presents a methodology for setting up a repository of building deep renovation packages that integrates industrialised facade technologies and more traditional solutions. The performances feeding into the repository have been evaluated by means of transient detailed simulations on a set of reference buildings in representative European climate conditions. The renovation packages are evaluated in terms of key performance indicators dealing with five areas: energy, comfort, pollutant emissions, cost, and renovation time. The defined repository includes 289 assessed technology packages and associated performances across Europe, providing a comprehensive support to identify the most effective solutions according to the user needs. The paper presents the application of the repository with two examples of stakeholders’ decision-making paths for selecting the deep renovation packages according to different priorities and expected targets.

Suggested Citation

  • Roberta Pernetti & Riccardo Pinotti & Roberto Lollini, 2021. "Repository of Deep Renovation Packages Based on Industrialized Solutions: Definition and Application," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6412-:d:568972
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Adriano Bisello, 2020. "Assessing Multiple Benefits of Housing Regeneration and Smart City Development: The European Project SINFONIA," Sustainability, MDPI, vol. 12(19), pages 1-28, September.
    3. Ballarini, Ilaria & Corrado, Vincenzo & Madonna, Francesco & Paduos, Simona & Ravasio, Franco, 2017. "Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology," Energy Policy, Elsevier, vol. 105(C), pages 148-160.
    4. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    5. Vivian W. Y. Tam & Laura Almeida & Khoa Le, 2018. "Energy-Related Occupant Behaviour and Its Implications in Energy Use: A Chronological Review," Sustainability, MDPI, vol. 10(8), pages 1-20, July.
    6. Mainali, Brijesh & Mahapatra, Krushna & Pardalis, Georgios, 2021. "Strategies for deep renovation market of detached houses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Giuseppe Margani & Gianpiero Evola & Carola Tardo & Edoardo Michele Marino, 2020. "Energy, Seismic, and Architectural Renovation of RC Framed Buildings with Prefabricated Timber Panels," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabrizio Cumo & Federica Giustini & Elisa Pennacchia & Carlo Romeo, 2022. "The “D2P” Approach: Digitalisation, Production and Performance in the Standardised Sustainable Deep Renovation of Buildings," Energies, MDPI, vol. 15(18), pages 1-28, September.
    2. Paolo Civiero & Jordi Pascual & Joaquim Arcas Abella & Jaume Salom, 2022. "Innovative PEDRERA Model Tool Boosting Sustainable and Feasible Renovation Programs at District Scale in Spain," Sustainability, MDPI, vol. 14(15), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonati, A. & De Luca, G. & Fabozzi, S. & Massarotti, N. & Vanoli, L., 2019. "The integration of exergy criterion in energy planning analysis for 100% renewable system," Energy, Elsevier, vol. 174(C), pages 749-767.
    2. Amar Bennadji & Mohammed Seddiki & Jamal Alabid & Richard Laing & David Gray, 2022. "Predicting Energy Savings of the UK Housing Stock under a Step-by-Step Energy Retrofit Scenario towards Net-Zero," Energies, MDPI, vol. 15(9), pages 1-18, April.
    3. Lamberto Tronchin & Kristian Fabbri & Maria Cristina Tommasino, 2023. "A Comparison of Thermal Insulation with Interstitial Condensation in Different Climate Contexts in Existing Buildings in Europe," Energies, MDPI, vol. 16(4), pages 1-15, February.
    4. Fabrizio Cumo & Federica Giustini & Elisa Pennacchia & Carlo Romeo, 2022. "The “D2P” Approach: Digitalisation, Production and Performance in the Standardised Sustainable Deep Renovation of Buildings," Energies, MDPI, vol. 15(18), pages 1-28, September.
    5. Bienvenido-Huertas, David & Moyano, Juan & Marín, David & Fresco-Contreras, Rafael, 2019. "Review of in situ methods for assessing the thermal transmittance of walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 356-371.
    6. Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
    7. Zoe Mayer & Julia Heuer & Rebekka Volk & Frank Schultmann, 2021. "Aerial Thermographic Image-Based Assessment of Thermal Bridges Using Representative Classifications and Calculations," Energies, MDPI, vol. 14(21), pages 1-43, November.
    8. Fu, Yijun & Xu, Wei & Wang, Zhichao & Zhang, Shicong & Chen, Xi & Zhang, Xinyu, 2023. "Experimental study on thermoelectric effect pattern analysis and novel thermoelectric coupling model of BIPV facade system," Renewable Energy, Elsevier, vol. 217(C).
    9. Becchio, Cristina & Bottero, Marta Carla & Corgnati, Stefano Paolo & Dell’Anna, Federico, 2018. "Decision making for sustainable urban energy planning: an integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin," Land Use Policy, Elsevier, vol. 78(C), pages 803-817.
    10. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    11. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    12. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    13. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Hanan S.S. Ibrahim & Ahmed Z. Khan & Shady Attia & Yehya Serag, 2021. "Classification of Heritage Residential Building Stock and Defining Sustainable Retrofitting Scenarios in Khedivial Cairo," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    15. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    16. Shengyuan Guo & Wanjiang Wang & Yihuan Zhou, 2022. "Research on Energy Saving and Economy of Old Buildings Based on Parametric Design: A Case Study of a Hospital in Linyi City, Shandong Province," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    17. Robert C. Vella & Charles Yousif & Francisco Javier Rey Martinez & Javier María Rey Hernandez, 2022. "Prioritising Passive Measures over Air Conditioning to Achieve Thermal Comfort in Mediterranean Baroque Churches," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    18. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    19. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    20. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6412-:d:568972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.