IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8819-d610033.html
   My bibliography  Save this article

Strategies for Structural and Energy Improvement in Mid-Rise Unreinforced Masonry Apartment Buildings. A Case Study in Mestre (Northeast Italy)

Author

Listed:
  • Luca Sbrogiò

    (Department of Cultural Heritage, University of Padua, P.za Capitaniato 7, 35139 Padova, Italy)

  • Carlotta Bevilacqua

    (Freelance Professional, Piazza Ferretto 55, 30174 Venezia, Italy)

  • Gabriele De Sordi

    (Freelance Professional, Via T. Tasso 21, 30172 Venezia, Italy)

  • Ivano Michelotto

    (Freelance Professional, Via D. Alighieri 4, 30034 Mira, Italy)

  • Marco Sbrogiò

    (Freelance Professional, Via Bissuola 79, 30173 Venezia, Italy)

  • Antonio Toniolo

    (Freelance Professional, Via Mediterraneo 28, 30034 Mira, Italy)

  • Christian Tosato

    (Freelance Professional, Via Teatro Vecchio 15, 30172 Venezia, Italy)

Abstract

Two-thirds of the Italian building stock was already built by the 1970s, largely according to gravity load design and using economical materials and poor workmanship. Currently, the structures, fixtures, and fittings of these buildings have reached the end of their service life, and they require both an assessment and an update to meet new standards and new needs. As an example of a common type, this article deals with the assessment of the present state and the proposal of an integrated structural and architectural intervention on an existing brick masonry mid-rise apartment building in the suburbs of Venice, Northern Italy. The structural analysis highlights a moderate vulnerability, despite the low seismic hazard, and the energy analysis indicates that the highest management costs are due to heating and sanitary uses. Low-impact strategies are preferred for each aspect of the required interventions. Their costs are counterbalanced by (a) the reduction to a fifth of the present management costs; (b) a 20% average increase in the economic value of the flats; and (c) a favorable tax regime at the national level. Transformed into parametric values, also useful for large scale analyses, these costs resulted in a sustainable monthly instalment from the owners, who may also benefit from the increased quality of the place where they live.

Suggested Citation

  • Luca Sbrogiò & Carlotta Bevilacqua & Gabriele De Sordi & Ivano Michelotto & Marco Sbrogiò & Antonio Toniolo & Christian Tosato, 2021. "Strategies for Structural and Energy Improvement in Mid-Rise Unreinforced Masonry Apartment Buildings. A Case Study in Mestre (Northeast Italy)," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8819-:d:610033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bernardino Romano & Francesco Zullo & Lorena Fiorini & Serena Ciabò & Alessandro Marucci, 2017. "Sprinkling: An Approach to Describe Urbanization Dynamics in Italy," Sustainability, MDPI, vol. 9(1), pages 1-17, January.
    2. Goldman, Charles A. & Greely, Kathleen M. & Harris, Jeffrey P., 1988. "Retrofit experience in U.S. multifamily buildings: Energy savings, costs, and economics," Energy, Elsevier, vol. 13(11), pages 797-811.
    3. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    4. Desideri, Umberto & Arcioni, Livia & Leonardi, Daniela & Cesaretti, Luca & Perugini, Perla & Agabitini, Elena & Evangelisti, Nicola, 2013. "Design of a multipurpose “zero energy consumption” building according to European Directive 2010/31/EU: Architectural and technical plants solutions," Energy, Elsevier, vol. 58(C), pages 157-167.
    5. Maria Rosa Valluzzi & Elisa Saler & Alberto Vignato & Matteo Salvalaggio & Giorgio Croatto & Giorgia Dorigatti & Umberto Turrini, 2021. "Nested Buildings: An Innovative Strategy for the Integrated Seismic and Energy Retrofit of Existing Masonry Buildings with CLT Panels," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    6. Travisi, Chiara M. & Camagni, Roberto & Nijkamp, Peter, 2010. "Impacts of urban sprawl and commuting: a modelling study for Italy," Journal of Transport Geography, Elsevier, vol. 18(3), pages 382-392.
    7. Galatioto, A. & Ciulla, G. & Ricciu, R., 2017. "An overview of energy retrofit actions feasibility on Italian historical buildings," Energy, Elsevier, vol. 137(C), pages 991-1000.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Busselli & Davide Cassol & Alessandro Prada & Ivan Giongo, 2021. "Timber Based Integrated Techniques to Improve Energy Efficiency and Seismic Behaviour of Existing Masonry Buildings," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    2. Hasim Altan & Bertug Ozarisoy, 2022. "An Analysis of the Development of Modular Building Design Elements to Improve Thermal Performance of a Representative High Rise Residential Estate in the Coastline City of Famagusta, Cyprus," Sustainability, MDPI, vol. 14(7), pages 1-50, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benedetto Manganelli & Beniamino Murgante & Lucia Saganeiti, 2020. "The Social Cost of Urban Sprinkling," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    2. Lešnik, Maja & Kravanja, Stojan & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2020. "Optimal design of timber-glass upgrade modules for vertical building extension from the viewpoints of energy efficiency and visual comfort," Applied Energy, Elsevier, vol. 270(C).
    3. Yasmine Sabry Hegazi & Heidi Ahmed Shalaby & Mady A. A. Mohamed, 2021. "Adaptive Reuse Decisions for Historic Buildings in Relation to Energy Efficiency and Thermal Comfort—Cairo Citadel, a Case Study from Egypt," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    4. Pochwała, Sławomir & Anweiler, Stanisław & Tańczuk, Mariusz & Klementowski, Igor & Przysiężniuk, Dawid & Adrian, Łukasz & McNamara, Greg & Stevanović, Žana, 2023. "Energy source impact on the economic and environmental effects of retrofitting a heritage building with a heat pump system," Energy, Elsevier, vol. 278(PB).
    5. Mirco Andreotti & Dario Bottino-Leone & Marta Calzolari & Pietromaria Davoli & Luisa Dias Pereira & Elena Lucchi & Alexandra Troi, 2020. "Applied Research of the Hygrothermal Behaviour of an Internally Insulated Historic Wall without Vapour Barrier: In Situ Measurements and Dynamic Simulations," Energies, MDPI, vol. 13(13), pages 1-22, July.
    6. Mariangela De Vita & Giulia Massari & Pierluigi De Berardinis, 2020. "Retrofit Methodology Based on Energy Simulation Modeling Applied for the Enhancement of a Historical Building in L’Aquila," Energies, MDPI, vol. 13(12), pages 1-26, June.
    7. Khadidja Rahmani & Atef Ahriz & Nahla Bouaziz, 2022. "Development of a New Residential Energy Management Approach for Retrofit and Transition, Based on Hybrid Energy Sources," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    8. Lešnik, Maja & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2018. "Design parameters of the timber-glass upgrade module and the existing building: Impact on the energy-efficient refurbishment process," Energy, Elsevier, vol. 162(C), pages 1125-1138.
    9. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    10. Stefania De Medici, 2021. "Italian Architectural Heritage and Photovoltaic Systems. Matching Style with Sustainability," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    11. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    12. Ortuño-Padilla, Armando & Fernández-Aracil, Patricia, 2013. "Impact of fuel price on the development of the urban sprawl in Spain," Journal of Transport Geography, Elsevier, vol. 33(C), pages 180-187.
    13. Cho, Hyun Mi & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Hygrothermal and energy retrofit planning of masonry façade historic building used as museum and office: A cultural properties case study," Energy, Elsevier, vol. 201(C).
    14. Galatioto, A. & Ricciu, R. & Salem, T. & Kinab, E., 2019. "Energy and economic analysis on retrofit actions for Italian public historic buildings," Energy, Elsevier, vol. 176(C), pages 58-66.
    15. Modarres, Ali, 2013. "Commuting and energy consumption: toward an equitable transportation policy," Journal of Transport Geography, Elsevier, vol. 33(C), pages 240-249.
    16. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    17. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    18. Ahlfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2019. "The economic effects of density: A synthesis," Journal of Urban Economics, Elsevier, vol. 111(C), pages 93-107.
    19. Bernardino Romano & Francesco Zullo & Alessandro Marucci & Lorena Fiorini, 2018. "Vintage Urban Planning in Italy: Land Management with the Tools of the Mid-Twentieth Century," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    20. Reichelt, Malte & Haas, Anette, 2015. "Commuting farther and earning more? : how employment density moderates workers commuting distance," IAB-Discussion Paper 201533, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8819-:d:610033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.