IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p784-d480628.html
   My bibliography  Save this article

Environmental Impacts of Milking Cows in Latvia

Author

Listed:
  • Janis Brizga

    (Department of Environmental Governance, University of Latvia, LV-1586 Riga, Latvia)

  • Sirpa Kurppa

    (LUKE, Finnish Natural Resource Institute, FI-00790 Helsinki, Finland)

  • Hannele Heusala

    (LUKE, Finnish Natural Resource Institute, FI-00790 Helsinki, Finland)

Abstract

Increasing pressures surrounding efficiency and sustainability are key global drivers in dairy farm management strategies. However, for numerous resource-based, social, and economic reasons sustainable intensification strategies are herd-size dependent. In this study, we investigated the environmental impacts of Latvia’s dairy farms with different management practices. The herd size-dependent management groups varied from extensively managed small herds with 1–9 cows, extending to stepwise more intensively managed herds with 10–50, 51–100, 100–200, and over 200 milking cows. The aim is to compare the environmental impacts of different size-based production strategies on Latvia’s dairy farms. The results show that the gross greenhouse gas emissions differ by 29%: from 1.09 kg CO 2 equivalents (CO 2e ) per kg of raw milk for the farms with 51–100 cows, down to 0.84 kg CO 2e /kg milk for farms with more than 200 cows. However, the land use differs even more—the largest farms use 2.25 times less land per kg of milk than the smallest farms. Global warming potential, marine eutrophication, terrestrial acidification, and ecotoxicity were highest for the mid-sized farms. If current domestic, farm-based protein feeds were to be substituted with imported soy feed (one of the most popular high-protein feeds) the environmental impacts of Latvian dairy production would significantly increase, e.g., land use would increase by 18% and the global warming potential by 43%. Environmental policy approaches for steering the farms should consider the overall effects of operation size on environmental quality, in order to support the best practices for each farm type and steer systematic change in the country. The limitations of this study are linked to national data availability (e.g., national data on feed production, heifer breeding, differences among farms regards soil type, manure management, the proximity to marine or aquatic habitats) and methodological shortcomings (e.g., excluding emissions of carbon sequestration, the use of proxy allocation, and excluding social and biodiversity impacts in life-cycle assessment). Further research is needed to improve the data quality, the allocation method, and provide farm-size-specific information on outputs, heifer breeding, manure storage, and handling.

Suggested Citation

  • Janis Brizga & Sirpa Kurppa & Hannele Heusala, 2021. "Environmental Impacts of Milking Cows in Latvia," Sustainability, MDPI, vol. 13(2), pages 1-12, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:784-:d:480628
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/784/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/784/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomassen, M.A. & van Calker, K.J. & Smits, M.C.J. & Iepema, G.L. & de Boer, I.J.M., 2008. "Life cycle assessment of conventional and organic milk production in the Netherlands," Agricultural Systems, Elsevier, vol. 96(1-3), pages 95-107, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajeev Bhat & Jorgelina Di Pasquale & Ferenc Istvan Bánkuti & Tiago Teixeira da Silva Siqueira & Philip Shine & Michael D. Murphy, 2022. "Global Dairy Sector: Trends, Prospects, and Challenges," Sustainability, MDPI, vol. 14(7), pages 1-7, April.
    2. Chenyang Liu & Lihang Cui & Cuixia Li, 2022. "Impact of Environmental Regulation on the Green Total Factor Productivity of Dairy Farming: Evidence from China," Sustainability, MDPI, vol. 14(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jongeneel, Roel & Polman, Nico & van der Ham, Corinda, 2014. "Costs and benefits associated with the externalities generated by Dutch agriculture," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182705, European Association of Agricultural Economists.
    2. Jan Willem Erisman & Allison Leach & Albert Bleeker & Brooke Atwell & Lia Cattaneo & James Galloway, 2018. "An Integrated Approach to a Nitrogen Use Efficiency (NUE) Indicator for the Food Production–Consumption Chain," Sustainability, MDPI, vol. 10(4), pages 1-29, March.
    3. Bonamigo, Andrei & Ferenhof, Helio Aisenberg & Forcellini, Fernando Antonio, 2017. "Dairy Ecosystem Barriers Exposed - A Case Study In A Family Production Unit At Western Santa Catarina, Brazil," Organizações Rurais e Agroindustriais/Rural and Agro-Industrial Organizations, Universidade Federal de Lavras, Departamento de Administracao e Economia, vol. 19(1), January.
    4. Kraatz, Simone, 2012. "Energy intensity in livestock operations – Modeling of dairy farming systems in Germany," Agricultural Systems, Elsevier, vol. 110(C), pages 90-106.
    5. Tuomisto, H.L. & Hodge, I.D. & Riordan, P. & Macdonald, D.W., 2012. "Comparing energy balances, greenhouse gas balances and biodiversity impacts of contrasting farming systems with alternative land uses," Agricultural Systems, Elsevier, vol. 108(C), pages 42-49.
    6. Ledgard, Stewart F. & Wei, Sha & Wang, Xiaoqin & Falconer, Shelley & Zhang, Nannan & Zhang, Xiying & Ma, Lin, 2019. "Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations," Agricultural Water Management, Elsevier, vol. 213(C), pages 155-163.
    7. Mathieu Lambotte & Stéphane de Cara & Catherine Brocas & Valentin Bellassen, 2021. "Carbon footprint and economic performance of dairy farms: the case of protected designation of origin dairy farms in France [Bilan carbone et performance économique des exploitations laitières : le," Post-Print hal-03021963, HAL.
    8. O'Brien, D. & Bohan, A. & McHugh, N. & Shalloo, L., 2016. "A life cycle assessment of the effect of intensification on the environmental impacts and resource use of grass-based sheep farming," Agricultural Systems, Elsevier, vol. 148(C), pages 95-104.
    9. Thomassen, M.A. & Dolman, M.A. & van Calker, K.J. & de Boer, I.J.M., 2009. "Relating life cycle assessment indicators to gross value added for Dutch dairy farms," Ecological Economics, Elsevier, vol. 68(8-9), pages 2278-2284, June.
    10. Mack, Gabriele & Kohler, Andreas, 2017. "Short- and long-run policy evaluation: support for grassland-based milk production in Switzerland," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 261116, European Association of Agricultural Economists.
    11. Céline Bonnet & Zohra Bouamra-Mechemache, 2016. "Organic Label, Bargaining Power, and Profit-sharing in the French Fluid Milk Market," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(1), pages 113-133.
    12. Pelletier, N., 2008. "Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions," Agricultural Systems, Elsevier, vol. 98(2), pages 67-73, September.
    13. Leinonen, Ilkka & Williams, Adrian G. & Waller, Anthony H. & Kyriazakis, Ilias, 2013. "Comparing the environmental impacts of alternative protein crops in poultry diets: The consequences of uncertainty," Agricultural Systems, Elsevier, vol. 121(C), pages 33-42.
    14. Jennifer S. Ford & Nathan L. Pelletier & Friederike Ziegler & Astrid J. Scholz & Peter H. Tyedmers & Ulf Sonesson & Sarah A. Kruse & Howard Silverman, 2012. "Proposed Local Ecological Impact Categories and Indicators for Life Cycle Assessment of Aquaculture," Journal of Industrial Ecology, Yale University, vol. 16(2), pages 254-265, April.
    15. Bellassen, Valentin & Drut, Marion & Hilal, Mohamed & Bodini, Antonio & Donati, Michele & de Labarre, Matthieu Duboys & Filipović, Jelena & Gauvrit, Lisa & Gil, José M. & Hoang, Viet & Malak-Rawlikows, 2022. "The economic, environmental and social performance of European certified food," Ecological Economics, Elsevier, vol. 191(C).
    16. Oishi, Kazato & Kato, Yohei & Ogino, Akifumi & Hirooka, Hiroyuki, 2013. "Economic and environmental impacts of changes in culling parity of cows and diet composition in Japanese beef cow–calf production systems," Agricultural Systems, Elsevier, vol. 115(C), pages 95-103.
    17. Philip Shine & John Upton & Paria Sefeedpari & Michael D. Murphy, 2020. "Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses," Energies, MDPI, vol. 13(5), pages 1-25, March.
    18. Aimee N. Hafla & Jennifer W. MacAdam & Kathy J. Soder, 2013. "Sustainability of US Organic Beef and Dairy Production Systems: Soil, Plant and Cattle Interactions," Sustainability, MDPI, vol. 5(7), pages 1-26, July.
    19. Koesling, Matthias & Hansen, Sissel & Bleken, Marina Azzaroli, 2017. "Variations in nitrogen utilisation on conventional and organic dairy farms in Norway," Agricultural Systems, Elsevier, vol. 157(C), pages 11-21.
    20. Castanheira, É.G. & Dias, A.C. & Arroja, L. & Amaro, R., 2010. "The environmental performance of milk production on a typical Portuguese dairy farm," Agricultural Systems, Elsevier, vol. 103(7), pages 498-507, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:784-:d:480628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.