IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v16y2012i2p254-265.html
   My bibliography  Save this article

Proposed Local Ecological Impact Categories and Indicators for Life Cycle Assessment of Aquaculture

Author

Listed:
  • Jennifer S. Ford
  • Nathan L. Pelletier
  • Friederike Ziegler
  • Astrid J. Scholz
  • Peter H. Tyedmers
  • Ulf Sonesson
  • Sarah A. Kruse
  • Howard Silverman

Abstract

In this study we discuss impact categories and indicators to incorporate local ecological impacts into life cycle assessment (LCA) for aquaculture. We focus on the production stages of salmon farming—freshwater hatcheries used to produce smolts and marine grow‐out sites using open netpens. Specifically, we propose two impact categories: impacts of nutrient release and impacts on biodiversity. Proposed indicators for impacts of nutrient release are (1) the area altered by farm waste, (2) changes in nutrient concentration in the water column, (3) the percent of carrying capacity reached, (4) the percent of total anthropogenic nutrient release, and (5) release of wastes into freshwater. Proposed indicators for impacts on biodiversity are (1) the number of escaped salmon, (2) the number of reported disease outbreaks, (3) parasite abundance on farms, and (4) the percent reduction in wild salmon survival. For each proposed indicator, an example of how the indicator could be estimated is given and the strengths and weaknesses of that indicator are discussed. We propose that including local environmental impacts as well as global‐scale ones in LCA allows us to better identify potential trade‐offs, where actions that are beneficial at one scale are harmful at another, and synchronicities, where actions have desirable or undesirable effects at both spatial scales. We also discuss the potential applicability of meta‐analytic statistical techniques to LCA.

Suggested Citation

  • Jennifer S. Ford & Nathan L. Pelletier & Friederike Ziegler & Astrid J. Scholz & Peter H. Tyedmers & Ulf Sonesson & Sarah A. Kruse & Howard Silverman, 2012. "Proposed Local Ecological Impact Categories and Indicators for Life Cycle Assessment of Aquaculture," Journal of Industrial Ecology, Yale University, vol. 16(2), pages 254-265, April.
  • Handle: RePEc:bla:inecol:v:16:y:2012:i:2:p:254-265
    DOI: 10.1111/j.1530-9290.2011.00410.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1530-9290.2011.00410.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1530-9290.2011.00410.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomassen, M.A. & van Calker, K.J. & Smits, M.C.J. & Iepema, G.L. & de Boer, I.J.M., 2008. "Life cycle assessment of conventional and organic milk production in the Netherlands," Agricultural Systems, Elsevier, vol. 96(1-3), pages 95-107, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Tamburini & Edoardo Turolla & Elisa Anna Fano & Giuseppe Castaldelli, 2020. "Sustainability of Mussel ( Mytilus Galloprovincialis ) Farming in the Po River Delta, Northern Italy, Based on a Life Cycle Assessment Approach," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    2. Samuel Le Féon & Théo Dubois & Christophe Jaeger & Aurélie Wilfart & Nouraya Akkal-Corfini & Jacopo Bacenetti & Michele Costantini & Joël Aubin, 2021. "DEXiAqua, a Model to Assess the Sustainability of Aquaculture Systems: Methodological Development and Application to a French Salmon Farm," Sustainability, MDPI, vol. 13(14), pages 1-28, July.
    3. Gaspard Philis & Friederike Ziegler & Mona Dverdal Jansen & Lars Christian Gansel & Sara Hornborg & Grete Hansen Aas & Anne Stene, 2022. "Quantifying environmental impacts of cleaner fish used as sea lice treatments in salmon aquaculture with life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1992-2005, December.
    4. Andreas Nicolaidis Lindqvist & Sarah Broberg & Linda Tufvesson & Sammar Khalil & Thomas Prade, 2019. "Bio-Based Production Systems: Why Environmental Assessment Needs to Include Supporting Systems," Sustainability, MDPI, vol. 11(17), pages 1-26, August.
    5. Gaspard Philis & Friederike Ziegler & Lars Christian Gansel & Mona Dverdal Jansen & Erik Olav Gracey & Anne Stene, 2019. "Comparing Life Cycle Assessment (LCA) of Salmonid Aquaculture Production Systems: Status and Perspectives," Sustainability, MDPI, vol. 11(9), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jongeneel, Roel & Polman, Nico & van der Ham, Corinda, 2014. "Costs and benefits associated with the externalities generated by Dutch agriculture," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182705, European Association of Agricultural Economists.
    2. Jan Willem Erisman & Allison Leach & Albert Bleeker & Brooke Atwell & Lia Cattaneo & James Galloway, 2018. "An Integrated Approach to a Nitrogen Use Efficiency (NUE) Indicator for the Food Production–Consumption Chain," Sustainability, MDPI, vol. 10(4), pages 1-29, March.
    3. Bonamigo, Andrei & Ferenhof, Helio Aisenberg & Forcellini, Fernando Antonio, 2017. "Dairy Ecosystem Barriers Exposed - A Case Study In A Family Production Unit At Western Santa Catarina, Brazil," Organizações Rurais e Agroindustriais/Rural and Agro-Industrial Organizations, Universidade Federal de Lavras, Departamento de Administracao e Economia, vol. 19(1), January.
    4. Kraatz, Simone, 2012. "Energy intensity in livestock operations – Modeling of dairy farming systems in Germany," Agricultural Systems, Elsevier, vol. 110(C), pages 90-106.
    5. Tuomisto, H.L. & Hodge, I.D. & Riordan, P. & Macdonald, D.W., 2012. "Comparing energy balances, greenhouse gas balances and biodiversity impacts of contrasting farming systems with alternative land uses," Agricultural Systems, Elsevier, vol. 108(C), pages 42-49.
    6. Ledgard, Stewart F. & Wei, Sha & Wang, Xiaoqin & Falconer, Shelley & Zhang, Nannan & Zhang, Xiying & Ma, Lin, 2019. "Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations," Agricultural Water Management, Elsevier, vol. 213(C), pages 155-163.
    7. Mathieu Lambotte & Stéphane de Cara & Catherine Brocas & Valentin Bellassen, 2021. "Carbon footprint and economic performance of dairy farms: the case of protected designation of origin dairy farms in France [Bilan carbone et performance économique des exploitations laitières : le," Post-Print hal-03021963, HAL.
    8. O'Brien, D. & Bohan, A. & McHugh, N. & Shalloo, L., 2016. "A life cycle assessment of the effect of intensification on the environmental impacts and resource use of grass-based sheep farming," Agricultural Systems, Elsevier, vol. 148(C), pages 95-104.
    9. Thomassen, M.A. & Dolman, M.A. & van Calker, K.J. & de Boer, I.J.M., 2009. "Relating life cycle assessment indicators to gross value added for Dutch dairy farms," Ecological Economics, Elsevier, vol. 68(8-9), pages 2278-2284, June.
    10. Mack, Gabriele & Kohler, Andreas, 2017. "Short- and long-run policy evaluation: support for grassland-based milk production in Switzerland," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 261116, European Association of Agricultural Economists.
    11. Céline Bonnet & Zohra Bouamra-Mechemache, 2016. "Organic Label, Bargaining Power, and Profit-sharing in the French Fluid Milk Market," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(1), pages 113-133.
    12. Pelletier, N., 2008. "Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions," Agricultural Systems, Elsevier, vol. 98(2), pages 67-73, September.
    13. Leinonen, Ilkka & Williams, Adrian G. & Waller, Anthony H. & Kyriazakis, Ilias, 2013. "Comparing the environmental impacts of alternative protein crops in poultry diets: The consequences of uncertainty," Agricultural Systems, Elsevier, vol. 121(C), pages 33-42.
    14. Bellassen, Valentin & Drut, Marion & Hilal, Mohamed & Bodini, Antonio & Donati, Michele & de Labarre, Matthieu Duboys & Filipović, Jelena & Gauvrit, Lisa & Gil, José M. & Hoang, Viet & Malak-Rawlikows, 2022. "The economic, environmental and social performance of European certified food," Ecological Economics, Elsevier, vol. 191(C).
    15. Oishi, Kazato & Kato, Yohei & Ogino, Akifumi & Hirooka, Hiroyuki, 2013. "Economic and environmental impacts of changes in culling parity of cows and diet composition in Japanese beef cow–calf production systems," Agricultural Systems, Elsevier, vol. 115(C), pages 95-103.
    16. Philip Shine & John Upton & Paria Sefeedpari & Michael D. Murphy, 2020. "Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses," Energies, MDPI, vol. 13(5), pages 1-25, March.
    17. Aimee N. Hafla & Jennifer W. MacAdam & Kathy J. Soder, 2013. "Sustainability of US Organic Beef and Dairy Production Systems: Soil, Plant and Cattle Interactions," Sustainability, MDPI, vol. 5(7), pages 1-26, July.
    18. Koesling, Matthias & Hansen, Sissel & Bleken, Marina Azzaroli, 2017. "Variations in nitrogen utilisation on conventional and organic dairy farms in Norway," Agricultural Systems, Elsevier, vol. 157(C), pages 11-21.
    19. Castanheira, É.G. & Dias, A.C. & Arroja, L. & Amaro, R., 2010. "The environmental performance of milk production on a typical Portuguese dairy farm," Agricultural Systems, Elsevier, vol. 103(7), pages 498-507, September.
    20. Oudshoorn, Frank W. & Sørensen, Claus Aage G. & de Boer, Imke I.J.M., 2011. "Economic and environmental evaluation of three goal-vision based scenarios for organic dairy farming in Denmark," Agricultural Systems, Elsevier, vol. 104(4), pages 315-325, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:16:y:2012:i:2:p:254-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.