IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p678-d479089.html
   My bibliography  Save this article

A Field Investigation on Adaptive Thermal Comfort in an Urban Environment Considering Individuals’ Psychological and Physiological Behaviors in a Cold-Winter of Wuhan

Author

Listed:
  • Mehdi Makvandi

    (School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China)

  • Xilin Zhou

    (School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
    Department of Architecture and Building Engineering, School of Environment and Society, Tokyo Institute of Technology, Yokohama 2268502, Japan)

  • Chuancheng Li

    (School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China)

  • Qinli Deng

    (School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China)

Abstract

To date, studies of outdoor thermal comfort (OTC) have focused primarily on physical factors, tending to overlook the relevance of individual adaptation to microclimate parameters through psychological and physiological behaviors. These adaptations can significantly affect the use of urban and outdoor spaces. The study presented here investigated these issues, with a view to aiding sustainable urban development. Measurements of OTC were taken at a university campus and in urban spaces. Simultaneously, a large-scale survey of thermal adaptability was conducted. Two groups were selected for investigation in a cold-winter-and-hot-summer (CWHS) region; respondents came from humid subtropical (Cfa) and hot desert (BWh) climates, according to the Köppen Climate Classification (KCC). Results showed that: (1) neutral physiological equivalent temperature (NPET) and preferred PET for people from the Cfa (PCfa) and BWh (PBWh) groups could be obtained with KCC; (2) PCfa adaptability behaviors were, subjectively, more adjustable than PBWh; (3) Clothing affected neutral temperature (NT), where NT reduced by approximately 0.5 °C when clothing insulation rose 0.1 Clo; and (4) Gender barely affected thermal acceptance vote (TAV) or thermal comfort vote (TCV) and there was a substantial relationship between thermal sensation, NT, and PET. These findings suggest ‘feels like’ temperature and comfort may be adjusted via relationships between microclimate parameters.

Suggested Citation

  • Mehdi Makvandi & Xilin Zhou & Chuancheng Li & Qinli Deng, 2021. "A Field Investigation on Adaptive Thermal Comfort in an Urban Environment Considering Individuals’ Psychological and Physiological Behaviors in a Cold-Winter of Wuhan," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:678-:d:479089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/678/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/678/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehdi Makvandi & Baofeng Li & Mohamed Elsadek & Zeinab Khodabakhshi & Mohsen Ahmadi, 2019. "The Interactive Impact of Building Diversity on the Thermal Balance and Micro-Climate Change under the Influence of Rapid Urbanization," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    2. Wu, Zhibin & Li, Nianping & Wargocki, Pawel & Peng, Jingqing & Li, Jingming & Cui, Haijiao, 2019. "Field study on thermal comfort and energy saving potential in 11 split air-conditioned office buildings in Changsha, China," Energy, Elsevier, vol. 182(C), pages 471-482.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaojiao Qi & Jiangping Wang & Wenya Zhai & Jingyong Wang & Ziliang Jin, 2022. "Are There Differences in Thermal Comfort Perception of Children in Comparison to Their Caregivers’ Judgments? A Study on the Playgrounds of Parks in China’s Hot Summer and Cold Winter Region," Sustainability, MDPI, vol. 14(17), pages 1-24, September.
    2. Liang Qiao & Xinling Yan, 2022. "Analysis of Thermal Comfort under Different Exercise Modes in Winter in Universities in Severe Cold Regions," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    3. Yuqing Shu & Kang Zou & Guie Li & Qingwu Yan & Siyu Zhang & Wenhao Zhang & Yuqing Liang & Wenzhou Xu, 2022. "Evaluation of Urban Thermal Comfort and Its Relationship with Land Use/Land Cover Change: A Case Study of Three Urban Agglomerations, China," Land, MDPI, vol. 11(12), pages 1-16, November.
    4. Ghada Elshafei & Silvia Vilcekova & Martina Zelenakova & Abdelazim M. Negm, 2021. "Towards an Adaptation of Efficient Passive Design for Thermal Comfort Buildings," Sustainability, MDPI, vol. 13(17), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zixu & Sun, Hongli & Wang, Baolong & Xiao, Hansong & Dong, Xian & Shi, Wenxing & Lin, Borong, 2022. "Experimental investigation on indoor environment and energy performance of convective terminals," Energy, Elsevier, vol. 251(C).
    2. Iasmin Lourenço Niza & Evandro Eduardo Broday, 2022. "An Analysis of Thermal Comfort Models: Which One Is Suitable Model to Assess Thermal Reality in Brazil?," Energies, MDPI, vol. 15(15), pages 1-19, July.
    3. Wang, Jingjie & Qiu, Rujia & Xu, Bin & Wu, Hongbin & Tang, Longjiang & Zhang, Mingxing & Ding, Ming, 2023. "Aggregated large-scale air-conditioning load: Modeling and response capability evaluation of virtual generator units," Energy, Elsevier, vol. 276(C).
    4. Xinzhi Gong & Qinglin Meng & Yilei Yu, 2021. "A Field Study on Thermal Comfort in Multi-Storey Residential Buildings in the Karst Area of Guilin," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    5. Kahori Genjo & Haruna Nakanishi & Momoka Oki & Hikaru Imagawa & Tomoko Uno & Teruyuki Saito & Hiroshi Takata & Kazuyo Tsuzuki & Takashi Nakaya & Daisaku Nishina & Kenichi Hasegawa & Taro Mori & Hom Ba, 2023. "Development of Adaptive Model and Occupant Behavior Model in Four Office Buildings in Nagasaki, Japan," Energies, MDPI, vol. 16(16), pages 1-30, August.
    6. Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
    7. Tongtong Ji & Tao Zhang & Hiroatsu Fukuda, 2024. "Thermal Comfort Research on the Rural Elderly in the Guanzhong Region: A Comparative Analysis Based on Age Stratification of Residential Environments," Sustainability, MDPI, vol. 16(14), pages 1-26, July.
    8. Peng Ren & Xinxin Zhang & Haoyan Liang & Qinglin Meng, 2019. "Assessing the Impact of Land Cover Changes on Surface Urban Heat Islands with High-Spatial-Resolution Imagery on a Local Scale: Workflow and Case Study," Sustainability, MDPI, vol. 11(19), pages 1-24, September.
    9. Cai, Shanshan & Li, Xu & Yang, Ling & Hua, Zhipeng & Li, Song & Tu, Zhengkai, 2024. "Demand flexibility and its impact on a PEM fuel cell-based integrated energy supply system with humidity control," Renewable Energy, Elsevier, vol. 228(C).
    10. Jiying Liu & Mohammad Heidarinejad & Saber Khoshdel Nikkho & Nicholas W. Mattise & Jelena Srebric, 2019. "Quantifying Impacts of Urban Microclimate on a Building Energy Consumption—A Case Study," Sustainability, MDPI, vol. 11(18), pages 1-21, September.
    11. Xie, Xing & Chen, Xing-ni & Xu, Bin & Pei, Gang, 2022. "Investigation of occupied/unoccupied period on thermal comfort in Guangzhou: Challenges and opportunities of public buildings with high window-wall ratio," Energy, Elsevier, vol. 244(PB).
    12. Naja Aqilah & Hom Bahadur Rijal & Sheikh Ahmad Zaki, 2022. "A Review of Thermal Comfort in Residential Buildings: Comfort Threads and Energy Saving Potential," Energies, MDPI, vol. 15(23), pages 1-23, November.
    13. Yuang Guo & Dewancker Bart, 2020. "Optimization of Design Parameters for Office Buildings with Climatic Adaptability Based on Energy Demand and Thermal Comfort," Sustainability, MDPI, vol. 12(9), pages 1-23, April.
    14. Chuan Chen & Mengshu He & Zihan Chu & Lishi He & Jiale Zhu & Yuan Bu & Jiangjun Wan & Lingqing Zhang, 2022. "Field Study on Indoor Thermal Environments of Monastic Houses and Thermal Comfort of Monks," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    15. Du, Chenqiu & Li, Baizhan & Yu, Wei & Liu, Hong & Yao, Runming, 2019. "Energy flexibility for heating and cooling based on seasonal occupant thermal adaptation in mixed-mode residential buildings," Energy, Elsevier, vol. 189(C).
    16. Prativa Lamsal & Sushil Bahadur Bajracharya & Hom Bahadur Rijal, 2023. "A Review on Adaptive Thermal Comfort of Office Building for Energy-Saving Building Design," Energies, MDPI, vol. 16(3), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:678-:d:479089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.