IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13797-d702010.html
   My bibliography  Save this article

Thermodynamic and Kinetic Description of the Main Effects Related to the Memory Effect during Carbon Dioxide Hydrates Formation in a Confined Environment

Author

Listed:
  • Federico Rossi

    (Engineering Department, University of Perugia, 93, 06125 Perugia, Italy)

  • Yan Li

    (CAS Key Laboratory of Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
    Institute of Deep-Sea Science and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Alberto Maria Gambelli

    (Engineering Department, University of Perugia, 93, 06125 Perugia, Italy)

Abstract

This article consists of an experimental description about how the memory effect intervenes on hydrates formation. In particular, carbon dioxide hydrates were formed in a lab–scale apparatus and in presence of demineralized water and a pure quartz porous medium. The same gas-water mixture was used. Half of experiments was carried out in order to ensure that the system retained memory of previous processes, while in the other half, such effect was completely avoided. Experiments were characterized thermodynamically and kinetically. The local conditions, required for hydrates formation, were compared with those of equilibrium. Moreover, the time needed for the process completion and the rate constant trend over time, were defined. The study of these parameters, together with the observation that hydrates formation was quantitatively similar in both types of experiments, allowed to conclude that the memory effect mainly acted as kinetic promoter for carbon dioxide hydrates formation.

Suggested Citation

  • Federico Rossi & Yan Li & Alberto Maria Gambelli, 2021. "Thermodynamic and Kinetic Description of the Main Effects Related to the Memory Effect during Carbon Dioxide Hydrates Formation in a Confined Environment," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13797-:d:702010
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13797/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13797/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yanlong & Wu, Nengyou & Ning, Fulong & Gao, Deli & Hao, Xiluo & Chen, Qiang & Liu, Changling & Sun, Jianye, 2020. "Hydrate-induced clogging of sand-control screen and its implication on hydrate production operation," Energy, Elsevier, vol. 206(C).
    2. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    3. Yuan, Qing & Sun, Chang-Yu & Yang, Xin & Ma, Ping-Chuan & Ma, Zheng-Wei & Liu, Bei & Ma, Qing-Lan & Yang, Lan-Ying & Chen, Guang-Jin, 2012. "Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor," Energy, Elsevier, vol. 40(1), pages 47-58.
    4. Yin, Zhenyuan & Huang, Li & Linga, Praveen, 2019. "Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization," Applied Energy, Elsevier, vol. 254(C).
    5. Bjørn Kvamme & Jinzhou Zhao & Na Wei & Wantong Sun & Navid Saeidi & Jun Pei & Tatiana Kuznetsova, 2020. "Hydrate Production Philosophy and Thermodynamic Calculations," Energies, MDPI, vol. 13(3), pages 1-34, February.
    6. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Li & Alberto Maria Gambelli & Yizhi Rao & Xuejian Liu & Zhenyuan Yin & Federico Rossi, 2024. "Unraveling the Role of Amino Acid L -Tryptophan Concentration in Enhancing CO 2 Hydrate Kinetics," Energies, MDPI, vol. 17(15), pages 1-15, July.
    2. Alberto Maria Gambelli & Giovanni Gigliotti & Federico Rossi, 2024. "Production of CH 4 /C 3 H 8 (85/15 vol%) Hydrate in a Lab-Scale Unstirred Reactor: Quantification of the Promoting Effect Due to the Addition of Propane to the Gas Mixture," Energies, MDPI, vol. 17(5), pages 1-14, February.
    3. Alberto Maria Gambelli & Federico Rossi & Giovanni Gigliotti, 2024. "Cold Energy Storage via Hydrates Production with Pure CO 2 and CO 2 /N 2 (70/30 and 50/50 vol%) Mixtures: Quantification and Comparison between Energy Stored and Energy Spent," Energies, MDPI, vol. 17(9), pages 1-12, May.
    4. Alberto Maria Gambelli & Mirko Filipponi & Federico Rossi, 2022. "Sequential Formation of CO 2 Hydrates in a Confined Environment: Description of Phase Equilibrium Boundary, Gas Consumption, Formation Rate and Memory Effect," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    5. Alberto Maria Gambelli & Xhino Rushani & Daniela Pezzolla & Federico Rossi & Giovanni Gigliotti, 2023. "Production of CO 2 Hydrates in Aqueous Mixtures Having (NH 4 ) 2 SO 4 at Different Concentrations; Definition of Consequences on the Process Evolution, Quantification of CO 2 Captured and Validation o," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
    6. Alberto Maria Gambelli & Federico Rossi, 2022. "Experimental Characterization of Memory Effect, Anomalous Self-Preservation and Ice-Hydrate Competition, during Methane-Hydrates Formation and Dissociation in a Lab-Scale Apparatus," Sustainability, MDPI, vol. 14(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Maria Gambelli & Federico Rossi, 2022. "Experimental Characterization of Memory Effect, Anomalous Self-Preservation and Ice-Hydrate Competition, during Methane-Hydrates Formation and Dissociation in a Lab-Scale Apparatus," Sustainability, MDPI, vol. 14(8), pages 1-19, April.
    2. Chen, Xuyue & Yang, Jin & Gao, Deli & Hong, Yuqun & Zou, Yiqi & Du, Xu, 2020. "Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: Review and an innovative method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Yan Li & Alberto Maria Gambelli & Federico Rossi, 2022. "Experimental Study on the Effect of SDS and Micron Copper Particles Mixture on Carbon Dioxide Hydrates Formation," Energies, MDPI, vol. 15(18), pages 1-16, September.
    4. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
    5. Li, Nan & Zhang, Jie & Xia, Ming-Ji & Sun, Chang-Yu & Liu, Yan-Sheng & Chen, Guang-Jin, 2021. "Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator," Energy, Elsevier, vol. 234(C).
    6. Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
    7. Terzariol, M. & Santamarina, J.C., 2021. "Multi-well strategy for gas production by depressurization from methane hydrate-bearing sediments," Energy, Elsevier, vol. 220(C).
    8. Roostaie, M. & Leonenko, Y., 2020. "Gas production from methane hydrates upon thermal stimulation; an analytical study employing radial coordinates," Energy, Elsevier, vol. 194(C).
    9. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    10. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    11. Ren, Liang-Liang & Qi, Ya-Hui & Chen, Jun-Li & Sun, Yi-Fei & Sun, Chang-Yu & Wang, Xiao-Hui & Chen, Guang-Jin & Yuan, Qing & Pang, Wei-Xin & Li, Qing-Ping, 2020. "Dependence of acoustic properties on hydrate-bearing sediments with heterogeneous distribution," Applied Energy, Elsevier, vol. 275(C).
    12. Alberto Maria Gambelli & Federico Rossi & Franco Cotana, 2022. "Gas Hydrates as High-Efficiency Storage System: Perspectives and Potentialities," Energies, MDPI, vol. 15(22), pages 1-14, November.
    13. Alberto Maria Gambelli & Federico Rossi, 2023. "Review on the Usage of Small-Chain Hydrocarbons (C 2 —C 4 ) as Aid Gases for Improving the Efficiency of Hydrate-Based Technologies," Energies, MDPI, vol. 16(8), pages 1-22, April.
    14. Zheng Li & Christine C. Holzammer & Andreas S. Braeuer, 2020. "Analysis of the Dissolution of CH 4 /CO 2 -Mixtures into Liquid Water and the Subsequent Hydrate Formation via In Situ Raman Spectroscopy," Energies, MDPI, vol. 13(4), pages 1-17, February.
    15. Jin, Guangrong & Su, Zheng & Zhai, Haizhen & Feng, Chuangji & Liu, Jie & Peng, Yingyu & Liu, Lihua, 2023. "Enhancement of gas production from hydrate reservoir using a novel deployment of multilateral horizontal well," Energy, Elsevier, vol. 270(C).
    16. Sun, Xiang & Li, Yanghui & Liu, Yu & Song, Yongchen, 2019. "The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization," Energy, Elsevier, vol. 185(C), pages 837-846.
    17. Kan, Jing-Yu & Sun, Yi-Fei & Dong, Bao-Can & Yuan, Qing & Liu, Bei & Sun, Chang-Yu & Chen, Guang-Jin, 2021. "Numerical simulation of gas production from permafrost hydrate deposits enhanced with CO2/N2 injection," Energy, Elsevier, vol. 221(C).
    18. Zhang, Jidong & Yin, Zhenyuan & Li, Qingping & Li, Shuaijun & Wang, Yi & Li, Xiao-Sen, 2023. "Comparison of fluid production between excess-gas and excess-water hydrate-bearing sediments under depressurization and its implication on energy recovery," Energy, Elsevier, vol. 282(C).
    19. Ning, Fulong & Chen, Qiang & Sun, Jiaxin & Wu, Xiang & Cui, Guodong & Mao, Peixiao & Li, Yanlong & Liu, Tianle & Jiang, Guosheng & Wu, Nengyou, 2022. "Enhanced gas production of silty clay hydrate reservoirs using multilateral wells and reservoir reformation techniques: Numerical simulations," Energy, Elsevier, vol. 254(PA).
    20. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13797-:d:702010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.