IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p12300-d674108.html
   My bibliography  Save this article

The Stability of Roadway Groups under Rheology Coupling Mining Disturbance

Author

Listed:
  • Sen Yang

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China
    Key Laboratory of Deep Coal Resource Mining of the Ministry of Education, University of Mining and Technology, Xuzhou 221116, China)

  • Guichen Li

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China
    Key Laboratory of Deep Coal Resource Mining of the Ministry of Education, University of Mining and Technology, Xuzhou 221116, China)

  • Ruiyang Bi

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Bicheng Yao

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China
    Key Laboratory of Deep Coal Resource Mining of the Ministry of Education, University of Mining and Technology, Xuzhou 221116, China)

  • Ruiguang Feng

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China
    Key Laboratory of Deep Coal Resource Mining of the Ministry of Education, University of Mining and Technology, Xuzhou 221116, China)

  • Yuantian Sun

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China
    Key Laboratory of Deep Coal Resource Mining of the Ministry of Education, University of Mining and Technology, Xuzhou 221116, China)

Abstract

The deep roadway groups play an important role in transportation and ventilation in coal mine production. Therefore, it is very important to comprehensively analyze the coupling effect of rheological deformation and coal mining on the stability of the roadway groups. In this paper, the disturbance effects of different stop-mining lines on roadway groups under long-term rheology were investigated by numerical simulation, and the failure mechanism of roadway groups with large sections and multiple disturbances in a deep well was revealed. The results show that the long working face will lead to the collapse of key strata, and the influence range will spread to the adjacent roadway groups. When the distance between the working face and the stop-mining line is 100 m, the roadway groups cannot be affected by the working face mining, and the reserved width of the coal pillar can be determined to be 100 m, which increases the stability of the roadway’s surrounding rock and maintains the mine safety production. This paper aims to provide a reference for groups design and control under similar conditions.

Suggested Citation

  • Sen Yang & Guichen Li & Ruiyang Bi & Bicheng Yao & Ruiguang Feng & Yuantian Sun, 2021. "The Stability of Roadway Groups under Rheology Coupling Mining Disturbance," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12300-:d:674108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/12300/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/12300/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuantian Sun & Guichen Li & Junfei Zhang & Jiahui Xu, 2020. "Failure Mechanisms of Rheological Coal Roadway," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    2. Małkowski Piotr & Ostrowski Łukasz & Bachanek Piotr, 2017. "Modelling the Small Throw Fault Effect on the Stability of a Mining Roadway and Its Verification by In Situ Investigation," Energies, MDPI, vol. 10(12), pages 1-21, December.
    3. Yuantian Sun & Guichen Li & Junfei Zhang & Deyu Qian, 2019. "Stability Control for the Rheological Roadway by a Novel High-Efficiency Jet Grouting Technique in Deep Underground Coal Mines," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    4. Yuantian Sun & Guichen Li & Junfei Zhang & Junbo Sun & Jiandong Huang & Reza Taherdangkoo, 2021. "New Insights of Grouting in Coal Mass: From Small-Scale Experiments to Microstructures," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongdong Chen & Fangfang Guo & Zijian Li & Xiang Ma & Shengrong Xie & Yiyi Wu & Zhiqiang Wang, 2022. "Study on the Influence and Control of Stress Direction Deflection and Partial-Stress Boosting of Main Roadways Surrounding Rock and under the Influence of Multi-Seam Mining," Energies, MDPI, vol. 15(21), pages 1-24, November.
    2. Shengrong Xie & Yiyi Wu & Fangfang Guo & Hang Zou & Dongdong Chen & Xiao Zhang & Xiang Ma & Ruipeng Liu & Chaowen Wu, 2022. "Application of Pre-Splitting and Roof-Cutting Control Technology in Coal Mining: A Review of Technology," Energies, MDPI, vol. 15(17), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingliang Chang & Yifeng Sun & Qiang Leng & Zexu Liu & Huaqiang Zhou & Yuantian Sun, 2021. "Stability Analysis of Paste Filling Roof by Cut and Fill Mining," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    2. Yuantian Sun & Guichen Li & Junfei Zhang & Junbo Sun & Jiandong Huang & Reza Taherdangkoo, 2021. "New Insights of Grouting in Coal Mass: From Small-Scale Experiments to Microstructures," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    3. Yuantian Sun & Guichen Li & Junfei Zhang & Jiahui Xu, 2020. "Failure Mechanisms of Rheological Coal Roadway," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    4. Peng Li & Xingping Lai & Peilin Gong & Chao Su & Yonglu Suo, 2020. "Mechanisms and Applications of Pressure Relief by Roof Cutting of a Deep-Buried Roadway near Goafs," Energies, MDPI, vol. 13(21), pages 1-16, November.
    5. Marek Jendryś & Andrzej Hadam & Mateusz Ćwiękała, 2021. "Directional Hydraulic Fracturing (DHF) of the Roof, as an Element of Rock Burst Prevention in the Light of Underground Observations and Numerical Modelling," Energies, MDPI, vol. 14(3), pages 1-18, January.
    6. Andrzej Gonet & Stanisław Stryczek & Marcin Kremieniewski, 2022. "Modern Methods of Strengthening and Sealing Salt Mines," Energies, MDPI, vol. 15(14), pages 1-12, July.
    7. Xutong Zhang & Fangtian Wang & Hongfei Qu & Chao Liu & Zhe Li & Wenhua Hao, 2023. "Surrounding Rocks Deformation Mechanism and Roof Cutting-Grouting Joint Control Technology for Soft and Thick Coal Seam Roadway," Sustainability, MDPI, vol. 15(21), pages 1-23, October.
    8. Piotr Małkowski & Łukasz Ostrowski & Łukasz Bednarek, 2020. "The Effect of Selected Factors on Floor Upheaval in Roadways—In Situ Testing," Energies, MDPI, vol. 13(21), pages 1-23, October.
    9. Xiaoping Xie & Hongyang Liu & Xinqiu Fang & Junwei Yang & Jiangang Liu & Minfu Liang & Gang Wu, 2023. "Deformation Mechanism and Control Technology of Surrounding Rock of Three-Soft Coal Roadways under High Horizontal Stress," Energies, MDPI, vol. 16(2), pages 1-23, January.
    10. Kuidong Gao & Jihai Liu & Hong Chen & Xu Li & Shuan Huang, 2023. "Dynamic Characteristics of Rock Holes with Gravel Sediment Drilled by Bit Anchor Cable Drilling," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    11. Junbiao Ma & Ning Jiang & Xujun Wang & Xiaodong Jia & Dehao Yao, 2021. "Numerical Study of the Strength and Characteristics of Sandstone Samples with Combined Double Hole and Double Fissure Defects," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    12. Longjun Dong & Yanlin Zhao & Wenxue Chen, 2022. "Mining Safety and Sustainability—An Overview," Sustainability, MDPI, vol. 14(11), pages 1-6, May.
    13. Oleg Bazaluk & Mykhailo Petlovanyi & Vasyl Lozynskyi & Serhii Zubko & Kateryna Sai & Pavlo Saik, 2021. "Sustainable Underground Iron Ore Mining in Ukraine with Backfilling Worked-Out Area," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    14. Kai Chen & Kai Zhan & Fan Pang & Xiaocong Yang & Da Zhang, 2022. "R-LIO: Rotating Lidar Inertial Odometry and Mapping," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    15. Song Shi & Yichen Miao & Haikuan Wu & Zhipeng Xu & Changwu Liu, 2022. "The Stress Evolution of Adjacent Working Faces Passing through an Abandoned Roadway and the Damage Depth of the Floor," Energies, MDPI, vol. 15(16), pages 1-17, August.
    16. Fan, Xin-li & Ma, Li & Sheng, You-jie & Liu, Xi-xi & Wei, Gao-ming & Liu, Shang-ming, 2023. "Experimental investigation on the characteristics of XG/GG/HPAM gel foam and prevention of coal spontaneous combustion," Energy, Elsevier, vol. 284(C).
    17. Xingkai Wang & Leibo Song & Caichu Xia & Guansheng Han & Zheming Zhu, 2021. "Nonlinear Elasto-Visco-Plastic Creep Behavior and New Creep Damage Model of Dolomitic Limestone Subjected to Cyclic Incremental Loading and Unloading," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    18. Kai Wang & Lianguo Wang & Bo Ren, 2021. "Failure Mechanism Analysis and Support Technology for Roadway Tunnel in Fault Fracture Zone: A Case Study," Energies, MDPI, vol. 14(13), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12300-:d:674108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.