IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2885-d341425.html
   My bibliography  Save this article

Failure Mechanisms of Rheological Coal Roadway

Author

Listed:
  • Yuantian Sun

    (Key Laboratory of Deep Coal Resource Mining; School of Mines; China University of Mining and Technology, Xuzhou 221116, China)

  • Guichen Li

    (Key Laboratory of Deep Coal Resource Mining; School of Mines; China University of Mining and Technology, Xuzhou 221116, China)

  • Junfei Zhang

    (Department of Civil, Environmental and Mining Engineering, the University of Western Australia, Perth 6009, Australia)

  • Jiahui Xu

    (Key Laboratory of Deep Coal Resource Mining; School of Mines; China University of Mining and Technology, Xuzhou 221116, China)

Abstract

The roadway instability in deep underground conditions has attracted constant concerns in recent years, as it seriously affects the efficiency of coal mining and the safety of personnel. The large rheological deformations normally occur in deep roadway with soft coal mass. However, the failure mechanism of such roadways is still not clear. In this study, based on a typical soft coal roadway in the field, the in-situ measurements and rock mass properties were obtained. The rheological deformation of that roadway was revealed. Then a time-dependent 3D numerical model was established and verified. Based on the verified model, the deformation properties and evolutionary failure mechanism of deep coal roadway were investigated in detail. The results showed that the deformation of the soft coal roadway demonstrated rheological behavior and the applied support structures failed completely. After roadway excavation, the maximum and minimum stresses around the roadway deteriorated gradually with the increase of time. The failure zones in soft coal mass expanded increasingly over time, which had a negative effect on roadway stability in the long-term. According to the findings, helpful suggestions were further presented to control the rheological deformation in the roadway. This research systematically reveals the instability mechanism of the deep coal roadway and provides some strategies for maintaining roadway stability, which can significantly promote the sustainability of mining in deep underground coal mines.

Suggested Citation

  • Yuantian Sun & Guichen Li & Junfei Zhang & Jiahui Xu, 2020. "Failure Mechanisms of Rheological Coal Roadway," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2885-:d:341425
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2885/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2885/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuantian Sun & Guichen Li & Junfei Zhang & Deyu Qian, 2019. "Stability Control for the Rheological Roadway by a Novel High-Efficiency Jet Grouting Technique in Deep Underground Coal Mines," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingliang Chang & Yifeng Sun & Qiang Leng & Zexu Liu & Huaqiang Zhou & Yuantian Sun, 2021. "Stability Analysis of Paste Filling Roof by Cut and Fill Mining," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    2. Longjun Dong & Yanlin Zhao & Wenxue Chen, 2022. "Mining Safety and Sustainability—An Overview," Sustainability, MDPI, vol. 14(11), pages 1-6, May.
    3. Junbiao Ma & Ning Jiang & Xujun Wang & Xiaodong Jia & Dehao Yao, 2021. "Numerical Study of the Strength and Characteristics of Sandstone Samples with Combined Double Hole and Double Fissure Defects," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    4. Marek Jendryś & Andrzej Hadam & Mateusz Ćwiękała, 2021. "Directional Hydraulic Fracturing (DHF) of the Roof, as an Element of Rock Burst Prevention in the Light of Underground Observations and Numerical Modelling," Energies, MDPI, vol. 14(3), pages 1-18, January.
    5. Sen Yang & Guichen Li & Ruiyang Bi & Bicheng Yao & Ruiguang Feng & Yuantian Sun, 2021. "The Stability of Roadway Groups under Rheology Coupling Mining Disturbance," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    6. Kuidong Gao & Jihai Liu & Hong Chen & Xu Li & Shuan Huang, 2023. "Dynamic Characteristics of Rock Holes with Gravel Sediment Drilled by Bit Anchor Cable Drilling," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    7. Yuantian Sun & Guichen Li & Junfei Zhang & Junbo Sun & Jiandong Huang & Reza Taherdangkoo, 2021. "New Insights of Grouting in Coal Mass: From Small-Scale Experiments to Microstructures," Sustainability, MDPI, vol. 13(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Li & Xingping Lai & Peilin Gong & Chao Su & Yonglu Suo, 2020. "Mechanisms and Applications of Pressure Relief by Roof Cutting of a Deep-Buried Roadway near Goafs," Energies, MDPI, vol. 13(21), pages 1-16, November.
    2. Andrzej Gonet & Stanisław Stryczek & Marcin Kremieniewski, 2022. "Modern Methods of Strengthening and Sealing Salt Mines," Energies, MDPI, vol. 15(14), pages 1-12, July.
    3. Xiaoping Xie & Hongyang Liu & Xinqiu Fang & Junwei Yang & Jiangang Liu & Minfu Liang & Gang Wu, 2023. "Deformation Mechanism and Control Technology of Surrounding Rock of Three-Soft Coal Roadways under High Horizontal Stress," Energies, MDPI, vol. 16(2), pages 1-23, January.
    4. Yuantian Sun & Guichen Li & Junfei Zhang & Junbo Sun & Jiandong Huang & Reza Taherdangkoo, 2021. "New Insights of Grouting in Coal Mass: From Small-Scale Experiments to Microstructures," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    5. Qingliang Chang & Yifeng Sun & Qiang Leng & Zexu Liu & Huaqiang Zhou & Yuantian Sun, 2021. "Stability Analysis of Paste Filling Roof by Cut and Fill Mining," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    6. Sen Yang & Guichen Li & Ruiyang Bi & Bicheng Yao & Ruiguang Feng & Yuantian Sun, 2021. "The Stability of Roadway Groups under Rheology Coupling Mining Disturbance," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    7. Xingkai Wang & Leibo Song & Caichu Xia & Guansheng Han & Zheming Zhu, 2021. "Nonlinear Elasto-Visco-Plastic Creep Behavior and New Creep Damage Model of Dolomitic Limestone Subjected to Cyclic Incremental Loading and Unloading," Sustainability, MDPI, vol. 13(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2885-:d:341425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.