IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5732-d438881.html
   My bibliography  Save this article

Mechanisms and Applications of Pressure Relief by Roof Cutting of a Deep-Buried Roadway near Goafs

Author

Listed:
  • Peng Li

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Department of Mining Engineering, Shanxi Institute of Energy, Jinzhong 030600, China)

  • Xingping Lai

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Peilin Gong

    (College of Mining Technology, Taiyuan University of Technology, Taiyuan 030024, China)

  • Chao Su

    (College of Mining Technology, Taiyuan University of Technology, Taiyuan 030024, China)

  • Yonglu Suo

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China)

Abstract

Affected by high ground stress, the surrounding rock control of a roadway is one of the most important factors restricting the utilization of deep resources. Therefore, it is necessary to propose a method to improve the stress environment of the deep-buried roadway and reduce its deformation. The article focuses on the 121,302 machine roadway in Kouzidong coal mine to analyze the large deformations of roadways near goafs (RNGs) in deep coal mines and reveal the mechanisms related to pressure relief via roof cutting. Through physical simulation, overburdened structures and the migration laws of RNGs in deep coal mines are studied, and the overburdened RNGs will eventually have a double short-arm “F”-type suspended roof structure. The superposition movement of the structure is the prime cause for the large deformation of the RNGs considered here. Artificial roof cutting can weaken the superposition effect of the double “F” structure and induce the roof to produce a new fracture. Meanwhile, sliding deformation along the fault line releases greater stress, and the cut roof can better fill the goaf. The stress distribution ratio between goafs and the coal pillar is improved. Here, a mechanical model of key block B’ (KBB’) is considered and the stability criterion of KBB’ is obtained. According to the theoretical calculation here, the stress of a coal pillar could be reduced by 19.14% when KBB’ is cut along the edge of the coal pillar in the 121,302 machine roadway. After engineering verification, the field observation result shows that the deformation of the 121,302 machine roadway is reduced by more than 50% after roof cutting.

Suggested Citation

  • Peng Li & Xingping Lai & Peilin Gong & Chao Su & Yonglu Suo, 2020. "Mechanisms and Applications of Pressure Relief by Roof Cutting of a Deep-Buried Roadway near Goafs," Energies, MDPI, vol. 13(21), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5732-:d:438881
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5732/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5732/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dawid Szurgacz & Jarosław Brodny, 2020. "Adapting the Powered Roof Support to Diverse Mining and Geological Conditions," Energies, MDPI, vol. 13(2), pages 1-22, January.
    2. Xinxian Zhai & Guangshuai Huang & Chengyu Chen & Rubo Li, 2018. "Combined Supporting Technology with Bolt-Grouting and Floor Pressure-Relief for Deep Chamber: An Underground Coal Mine Case Study," Energies, MDPI, vol. 11(1), pages 1-16, January.
    3. Yuantian Sun & Guichen Li & Junfei Zhang & Deyu Qian, 2019. "Stability Control for the Rheological Roadway by a Novel High-Efficiency Jet Grouting Technique in Deep Underground Coal Mines," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    4. Manchao He & Yubing Gao & Jun Yang & Weili Gong, 2017. "An Innovative Approach for Gob-Side Entry Retaining in Thick Coal Seam Longwall Mining," Energies, MDPI, vol. 10(11), pages 1-22, November.
    5. Dawid Szurgacz & Jarosław Brodny, 2019. "Tests of Geometry of the Powered Roof Support Section," Energies, MDPI, vol. 12(20), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guang Li & Fengshan Ma & Jie Guo & Haijun Zhao, 2021. "Case Study of Roadway Deformation Failure Mechanisms: Field Investigation and Numerical Simulation," Energies, MDPI, vol. 14(4), pages 1-15, February.
    2. Zhibiao Guo & Haohao Wang & Zimin Ma & Pengfei Wang & Xiaohui Kuai & Xianzhe Zhang, 2021. "Research on the Transmission of Stresses by Roof Cutting near Gob Rocks," Energies, MDPI, vol. 14(5), pages 1-24, February.
    3. Shengrong Xie & Yiyi Wu & Fangfang Guo & Hang Zou & Dongdong Chen & Xiao Zhang & Xiang Ma & Ruipeng Liu & Chaowen Wu, 2022. "Application of Pre-Splitting and Roof-Cutting Control Technology in Coal Mining: A Review of Technology," Energies, MDPI, vol. 15(17), pages 1-20, September.
    4. Chao Su & Pengfei Jiang & Peilin Gong & Chang Liu & Peng Li & Yuedong Liu, 2022. "Analysis of Roof Stability of Coal Roadway Heading Face," Energies, MDPI, vol. 15(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoping Xie & Hongyang Liu & Xinqiu Fang & Junwei Yang & Jiangang Liu & Minfu Liang & Gang Wu, 2023. "Deformation Mechanism and Control Technology of Surrounding Rock of Three-Soft Coal Roadways under High Horizontal Stress," Energies, MDPI, vol. 16(2), pages 1-23, January.
    2. Yang Yu & Jianbiao Bai & Xiangyu Wang & Lianying Zhang, 2020. "Control of the Surrounding Rock of a Goaf-Side Entry Driving Heading Mining Face," Sustainability, MDPI, vol. 12(7), pages 1-16, March.
    3. Qiong Wang & Zhibiao Guo & Chun Zhu & Songyang Yin & Dawei Yin, 2021. "The Deformation Characteristics and Lateral Stress of Roadside Crushed Rocks with Different Particles in Non-Pillar Coal Mining," Energies, MDPI, vol. 14(13), pages 1-14, June.
    4. Yuantian Sun & Guichen Li & Junfei Zhang & Jiahui Xu, 2020. "Failure Mechanisms of Rheological Coal Roadway," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    5. Bo Wang & Sitao Zhu & Fuxing Jiang & Jinhai Liu & Xiaoguang Shang & Xiufeng Zhang, 2020. "Investigating the Width of Isolated Coal Pillars in Deep Hard-Strata Mines for Prevention of Mine Seismicity and Rockburst," Energies, MDPI, vol. 13(17), pages 1-18, August.
    6. Xiaojie Yang & Eryu Wang & Xingen Ma & Guofeng Zhang & Ruifeng Huang & Haopeng Lou, 2019. "A Case Study on Optimization and Control Techniques for Entry Stability in Non-Pillar Longwall Mining," Energies, MDPI, vol. 12(3), pages 1-17, January.
    7. Xiaowei Guo & Xigui Zheng & Peng Li & Rui Lian & Cancan Liu & Niaz Muhammad Shahani & Cong Wang & Boyang Li & Wenjie Xu & Guowei Lai, 2021. "Full-Stress Anchoring Technology and Application of Bolts in the Coal Roadway," Energies, MDPI, vol. 14(22), pages 1-24, November.
    8. Jinzhu Hu & Manchao He & Jiong Wang & Zimin Ma & Yajun Wang & Xingyu Zhang, 2019. "Key Parameters of Roof Cutting of Gob-Side Entry Retaining in a Deep Inclined Thick Coal Seam with Hard Roof," Energies, MDPI, vol. 12(5), pages 1-19, March.
    9. Dong Wang & Yujing Jiang & Xiaoming Sun & Hengjie Luan & Hui Zhang, 2019. "Nonlinear Large Deformation Mechanism and Stability Control of Deep Soft Rock Roadway: A Case Study in China," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    10. Xiaoyu Liu & Manchao He & Jiong Wang & Zimin Ma, 2021. "Research on Non-Pillar Coal Mining for Thick and Hard Conglomerate Roof," Energies, MDPI, vol. 14(2), pages 1-14, January.
    11. Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski & Anna Zagórska, 2020. "Modified Rock Bolt Support for Mining Method with Controlled Roof Bending," Energies, MDPI, vol. 13(8), pages 1-20, April.
    12. Wensheng Wei & Guojun Zhang & Chunyuan Li & Wenshuai Zhang & Yupeng Shen, 2023. "Mechanism and Control of Asymmetric Floor Heave in Deep Roadway Disturbed by Roof Fracture," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    13. Yuantian Sun & Guichen Li & Junfei Zhang & Deyu Qian, 2019. "Stability Control for the Rheological Roadway by a Novel High-Efficiency Jet Grouting Technique in Deep Underground Coal Mines," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    14. Qingliang Zeng & Zhaoji Li & Lirong Wan & Dejian Ma & Jiantao Wang, 2022. "Research on Dynamic Characteristics of Canopy and Column of Hydraulic Support under Impact Load," Energies, MDPI, vol. 15(13), pages 1-20, June.
    15. Xinshuai Shi & Hongwen Jing & Zhenlong Zhao & Yuan Gao & Yuanchao Zhang & Ruodi Bu, 2020. "Physical Experiment and Numerical Modeling on the Failure Mechanism of Gob-Side Entry Driven in Thick Coal Seam," Energies, MDPI, vol. 13(20), pages 1-24, October.
    16. Houqiang Yang & Changliang Han & Nong Zhang & Changlun Sun & Dongjiang Pan & Minghui Dong, 2019. "Stability Control of a Goaf-Side Roadway under the Mining Disturbance of an Adjacent Coal Working Face in an Underground Mine," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    17. Andrzej Gonet & Stanisław Stryczek & Marcin Kremieniewski, 2022. "Modern Methods of Strengthening and Sealing Salt Mines," Energies, MDPI, vol. 15(14), pages 1-12, July.
    18. Magdalena Tutak, 2019. "The Influence of the Permeability of the Fractures Zone Around the Heading on the Concentration and Distribution of Methane," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    19. Zhenqian Ma & Dongyue Zhang & Yunqin Cao & Wei Yang & Biao Xu, 2022. "Study of Key Technology of Gob-Side Entry Retention in a High Gas Outburst Coal Seam in the Karst Mountain Area," Energies, MDPI, vol. 15(11), pages 1-21, June.
    20. Sari Melati & Ridho Kresna Wattimena & David Prambudi Sahara & Syafrizal & Ganda Marihot Simangunsong & Wahyu Hidayat & Erwin Riyanto & Raden Roro Shinta Felisia, 2022. "Block Caving Mining Method: Transformation and Its Potency in Indonesia," Energies, MDPI, vol. 16(1), pages 1-36, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5732-:d:438881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.