IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10833-d902225.html
   My bibliography  Save this article

R-LIO: Rotating Lidar Inertial Odometry and Mapping

Author

Listed:
  • Kai Chen

    (Beijing General Research Institute of Mining and Metallurgy, Building 23, Zone 18 of ABP, No. 188 South 4th Ring Road West, Beijing 102628, China
    College of Mechanics Engineering, Beijing University of Science and Technology, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China)

  • Kai Zhan

    (Beijing General Research Institute of Mining and Metallurgy, Building 23, Zone 18 of ABP, No. 188 South 4th Ring Road West, Beijing 102628, China
    College of Mechanics Engineering, Beijing University of Science and Technology, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China)

  • Fan Pang

    (Beijing General Research Institute of Mining and Metallurgy, Building 23, Zone 18 of ABP, No. 188 South 4th Ring Road West, Beijing 102628, China)

  • Xiaocong Yang

    (Beijing General Research Institute of Mining and Metallurgy, Building 23, Zone 18 of ABP, No. 188 South 4th Ring Road West, Beijing 102628, China)

  • Da Zhang

    (Beijing General Research Institute of Mining and Metallurgy, Building 23, Zone 18 of ABP, No. 188 South 4th Ring Road West, Beijing 102628, China)

Abstract

In this paper, we propose a novel simultaneous localization and mapping algorithm, R-LIO, which combines rotating multi-line lidar and inertial measurement unit. R-LIO can achieve real-time and high-precision pose estimation and map-building. R-LIO is mainly composed of four sequential modules, namely nonlinear motion distortion compensation module, frame-to-frame point cloud matching module based on normal distribution transformation by self-adaptive grid, frame-to-submap point cloud matching module based on line and surface feature, and loop closure detection module based on submap-to-submap point cloud matching. R-LIO is tested on public datasets and private datasets, and it is compared quantitatively and qualitatively to the four well-known methods. The test results show that R-LIO has a comparable localization accuracy to well-known algorithms as LIO-SAM, FAST-LIO2, and Faster-LIO in non-rotating lidar data. The standard algorithms cannot function normally with rotating lidar data. Compared with non-rotating lidar data, R-LIO can improve localization and mapping accuracy in rotating lidar data.

Suggested Citation

  • Kai Chen & Kai Zhan & Fan Pang & Xiaocong Yang & Da Zhang, 2022. "R-LIO: Rotating Lidar Inertial Odometry and Mapping," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10833-:d:902225
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10833/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10833/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuantian Sun & Guichen Li & Junfei Zhang & Junbo Sun & Jiandong Huang & Reza Taherdangkoo, 2021. "New Insights of Grouting in Coal Mass: From Small-Scale Experiments to Microstructures," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xutong Zhang & Fangtian Wang & Hongfei Qu & Chao Liu & Zhe Li & Wenhua Hao, 2023. "Surrounding Rocks Deformation Mechanism and Roof Cutting-Grouting Joint Control Technology for Soft and Thick Coal Seam Roadway," Sustainability, MDPI, vol. 15(21), pages 1-23, October.
    2. Qingliang Chang & Yifeng Sun & Qiang Leng & Zexu Liu & Huaqiang Zhou & Yuantian Sun, 2021. "Stability Analysis of Paste Filling Roof by Cut and Fill Mining," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    3. Sen Yang & Guichen Li & Ruiyang Bi & Bicheng Yao & Ruiguang Feng & Yuantian Sun, 2021. "The Stability of Roadway Groups under Rheology Coupling Mining Disturbance," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    4. Song Shi & Yichen Miao & Haikuan Wu & Zhipeng Xu & Changwu Liu, 2022. "The Stress Evolution of Adjacent Working Faces Passing through an Abandoned Roadway and the Damage Depth of the Floor," Energies, MDPI, vol. 15(16), pages 1-17, August.
    5. Fan, Xin-li & Ma, Li & Sheng, You-jie & Liu, Xi-xi & Wei, Gao-ming & Liu, Shang-ming, 2023. "Experimental investigation on the characteristics of XG/GG/HPAM gel foam and prevention of coal spontaneous combustion," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10833-:d:902225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.