IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11974-d667956.html
   My bibliography  Save this article

Embodied Carbon and Embodied Energy Scenarios in the Built Environment. Computational Design Meets EPDs

Author

Listed:
  • Sara Giaveno

    (Department of Architecture and Design (DAD), Politecnico di Torino, 10100 Torino, Italy)

  • Anna Osello

    (Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, 10100 Torino, Italy)

  • Davide Garufi

    (CRH, 1012 Amsterdam, The Netherlands)

  • Diego Santamaria Razo

    (CRH, 1012 Amsterdam, The Netherlands)

Abstract

This article aims to study the political, environmental and economic factors in contemporary society that influence new approaches and decision making in design in terms of carbon emissions and energy employment. These issues are increasingly influencing political decision making and public policy throughout every aspect of society, including the design practice. Managing this kind of complexity means adopting new forms of collaboration, methodologies and tools, knowledge and technology sharing. The article aims to narrate a PhD research experience grounded in academy–industry collaboration and aimed at creating a digital methodology for impact evaluation and investment planning. In particular, the digital methodology focuses on responding to international public policy for the sustainable growth of cities, in terms of footprint and energy demand, by including a holistic view of the design process made possible by the use of life-cycle assessment (LCA) procedures. To simplify the calculation, the methodology focuses on the Environmental Product Declaration (EPD) data rather than the entire LCA. The EPD is a document that describes the environmental impacts linked to the production of a specific quantity of product or service. The objective was not to create another evaluation method but to employ the EPD results in combination with parametric and computational procedures. The integration of those procedures by using visual programming and scripting allowed the calculation of Embodied Carbon and Embodied Energy and created a user-friendly interface to query the results. The output obtained included automatic and dynamic diagrams able to identify impact scenarios in terms of CO 2 emissions and MJ of embodied energy after the conceptual design stage. The strategic use of the charts lies in their potential to simulate impact conditions and, therefore, in the chance to create sustainable transformation scenarios in the early stages of design. At this point, the influence on choices is at its highest, and the costs are low. Moreover, the methodology represents a platform of collaboration that potentially increases the level of interaction between the actors of the construction process with the consequent improvement in design quality. In conclusion, building the design methodology and testing its performance within a specific sociotechnical context was important in critically evaluating certain topics, for example, the recent European strategies on new technology to reach sustainable objectives, the role of digital tools in proposing solutions towards contemporary social issues, the birth of new forms of partnership and collaboration and the new possibilities coming from digital evaluation approaches.

Suggested Citation

  • Sara Giaveno & Anna Osello & Davide Garufi & Diego Santamaria Razo, 2021. "Embodied Carbon and Embodied Energy Scenarios in the Built Environment. Computational Design Meets EPDs," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11974-:d:667956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Young-su Shin & Kyuman Cho, 2015. "BIM Application to Select Appropriate Design Alternative with Consideration of LCA and LCCA," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-14, September.
    2. Barnes, Tina & Pashby, Ian & Gibbons, Anne, 2002. "Effective University - Industry Interaction:: A Multi-case Evaluation of Collaborative R&D Projects," European Management Journal, Elsevier, vol. 20(3), pages 272-285, June.
    3. Sungwoo Lee & Sungho Tae & Seungjun Roh & Taehyung Kim, 2015. "Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact," Sustainability, MDPI, vol. 7(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernardette Soust-Verdaguer & José Antonio Gutiérrez Moreno & Carmen Llatas, 2023. "Utilization of an Automatic Tool for Building Material Selection by Integrating Life Cycle Sustainability Assessment in the Early Design Stages in BIM," Sustainability, MDPI, vol. 15(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Jrade & Farnaz Jalaei & Jieying Jane Zhang & Saeed Jalilzadeh Eirdmousa & Farzad Jalaei, 2023. "Potential Integration of Bridge Information Modeling and Life Cycle Assessment/Life Cycle Costing Tools for Infrastructure Projects within Construction 4.0: A Review," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
    2. Dongchen Han & Mohsen Kalantari & Abbas Rajabifard, 2021. "Building Information Modeling (BIM) for Construction and Demolition Waste Management in Australia: A Research Agenda," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    3. C.M.M. Chin & E.H. Yap & A.C. Spowage, 2011. "Project Management Methodology for University-Industry Collaborative Projects," REVISTA DE MANAGEMENT COMPARAT INTERNATIONAL/REVIEW OF INTERNATIONAL COMPARATIVE MANAGEMENT, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 12(5), pages 901-918, December.
    4. Annita Nugent & Ho Fai Chan & Uwe Dulleck, 2022. "Government funding of university-industry collaboration: exploring the impact of targeted funding on university patent activity," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 29-73, January.
    5. James A. Cunningham & Paul O’Reilly, 2018. "Macro, meso and micro perspectives of technology transfer," The Journal of Technology Transfer, Springer, vol. 43(3), pages 545-557, June.
    6. Sintov, Nicole D. & Schuitema, Geertje, 2018. "Odd couple or perfect pair? Tensions and recommendations for social scientist-industry partnerships in energy research," Energy Policy, Elsevier, vol. 117(C), pages 247-251.
    7. Chung, Jaemin & Ko, Namuk & Yoon, Janghyeok, 2021. "Inventor group identification approach for selecting university-industry collaboration partners," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    8. Lee, Young Hoon & Kim, YoungJun, 2016. "Analyzing interaction in R&D networks using the Triple Helix method: Evidence from industrial R&D programs in Korean government," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 93-105.
    9. Taheri, Mozhdeh & van Geenhuizen, Marina, 2016. "Teams' boundary-spanning capacity at university: Performance of technology projects in commercialization," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 31-43.
    10. Hiroyuki Okamuro & Junichi Nishimura, 2013. "Impact of university intellectual property policy on the performance of university-industry research collaboration," The Journal of Technology Transfer, Springer, vol. 38(3), pages 273-301, June.
    11. Wenqing Wu & Kexin Yu & Saixiang Ma & Chien-Chi Chu & Shijie Li & Chengcheng Ma & Sang-Bing Tsai, 2018. "An Empirical Study on Optimal Strategies of Industry-University-Institute Green Innovation with Subsidy," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    12. Robert Rybnicek & Julia Plakolm & Lisa Baumgartner & Alfred Gutschelhofer, 2017. "The importance of interpersonal and social factors in university?industry collaboration," Proceedings of Business and Management Conferences 5207581, International Institute of Social and Economic Sciences.
    13. Alessandro D’Amico & Giacomo Bergonzoni & Agnese Pini & Edoardo Currà, 2020. "BIM for Healthy Buildings: An Integrated Approach of Architectural Design based on IAQ Prediction," Sustainability, MDPI, vol. 12(24), pages 1-31, December.
    14. Kai Xue & Md. Uzzal Hossain & Meng Liu & Mingjun Ma & Yizhi Zhang & Mengqiang Hu & XiaoYi Chen & Guangyu Cao, 2021. "BIM Integrated LCA for Promoting Circular Economy towards Sustainable Construction: An Analytical Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    15. Yung-Chi Shen, 2017. "Identifying the key barriers and their interrelationships impeding the university technology transfer in Taiwan: a multi-stakeholder perspective," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2865-2884, November.
    16. Amara, Nabil & Olmos-Peñuela, Julia & Fernández-de-Lucio, Ignacio, 2019. "Overcoming the “lost before translation” problem: An exploratory study," Research Policy, Elsevier, vol. 48(1), pages 22-36.
    17. Jozef Mitterpach & Emília Hroncová & Juraj Ladomerský & Jozef Štefko, 2016. "Quantification of Improvement in Environmental Quality for Old Residential Buildings Using Life Cycle Assessment," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
    18. Wei En Tan & Peng Yen Liew & Lian See Tan & Kok Sin Woon & Nor Erniza Mohammad Rozali & Wai Shin Ho & Jamian NorRuwaida, 2022. "Life Cycle Assessment and Techno-Economic Analysis for Anaerobic Digestion as Cow Manure Management System," Energies, MDPI, vol. 15(24), pages 1-16, December.
    19. Suh, Yongyoon & Woo, Chulwan & Koh, Jinhwan & Jeon, Jeonghwan, 2019. "Analysing the satisfaction of university–industry cooperation efforts based on the Kano model: A Korean case," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    20. Xi Yu & Krishna P. Paudel & Dongmei Li & Xiaolei Xiong & Yanyu Gong, 2020. "Sustainable Collaborative Innovation between Research Institutions and Seed Enterprises in China," Sustainability, MDPI, vol. 12(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11974-:d:667956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.