IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5411-d872629.html
   My bibliography  Save this article

Modeling and Stability Analysis of Distributed Secondary Control Scheme for Stand-Alone DC Microgrid Applications

Author

Listed:
  • Anuoluwapo Aluko

    (Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699, USA)

  • Andrew Swanson

    (Discipline of Electrical, Electronics and Computer Engineering, University of KwaZulu-Natal, Durban 4041, KwaZulu-Natal, South Africa)

  • Leigh Jarvis

    (Discipline of Electrical, Electronics and Computer Engineering, University of KwaZulu-Natal, Durban 4041, KwaZulu-Natal, South Africa)

  • David Dorrell

    (School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg 2000, Gauteng, South Africa)

Abstract

Stand-alone DC microgrids have multiple distributed generation (DG) sources that meet the required demand (load) by using droop control to achieve load (current) sharing between the DGs. The use of droop control leads to a voltage drop at the DC bus. This paper presents a distributed secondary control scheme to simultaneously ensure current sharing between the DGs and regulate the DC bus voltage. The proposed control scheme eliminates the voltage deviation and ensures balanced current sharing by combining the voltage and current errors in the designed secondary control loop. A new flight-based artificial bee colony optimization algorithm is proposed. This selects the parameters of the distributed secondary control scheme to achieve the objectives of the proposed controller. A state–space model of the DC microgrid is developed by using eigenvalue observation to test the impacts of the proposed optimized distributed secondary controller on the stability of the DC microgrid system. A real-time test system is developed in MATLAB/Simulink and used in a Speedgoat real-time simulator to verify the performance of the proposed control scheme for real-world applications. The results show the robustness of the proposed distributed secondary control scheme in achieving balance current sharing and voltage regulation in the DC microgrid with minimal oscillations and fast response time.

Suggested Citation

  • Anuoluwapo Aluko & Andrew Swanson & Leigh Jarvis & David Dorrell, 2022. "Modeling and Stability Analysis of Distributed Secondary Control Scheme for Stand-Alone DC Microgrid Applications," Energies, MDPI, vol. 15(15), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5411-:d:872629
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5411/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5411/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anuoluwapo Oluwatobiloba Aluko & David George Dorrell & Rudiren Pillay Carpanen & Evan E. Ojo, 2020. "Heuristic Optimization of Virtual Inertia Control in Grid-Connected Wind Energy Conversion Systems for Frequency Support in a Restructured Environment," Energies, MDPI, vol. 13(3), pages 1-28, January.
    2. Liyuan Gao & Yao Liu & Huisong Ren & Josep M. Guerrero, 2017. "A DC Microgrid Coordinated Control Strategy Based on Integrator Current-Sharing," Energies, MDPI, vol. 10(8), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed H. EL-Ebiary & Mohamed Mokhtar & Atef M. Mansour & Fathy H. Awad & Mostafa I. Marei & Mahmoud A. Attia, 2022. "Distributed Mitigation Layers for Voltages and Currents Cyber-Attacks on DC Microgrids Interfacing Converters," Energies, MDPI, vol. 15(24), pages 1-32, December.
    2. Xiang Li & Zhenya Ji & Fengkun Yang & Zhenlan Dou & Chunyan Zhang & Liangliang Chen, 2022. "A Distributed Two-Level Control Strategy for DC Microgrid Considering Safety of Charging Equipment," Energies, MDPI, vol. 15(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Antonio Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Power Management of the DC Bus Connected Converters in a Hybrid AC/DC Microgrid Tied to the Main Grid," Energies, MDPI, vol. 11(4), pages 1-22, March.
    2. Hao Pan & Ming Ding & Rui Bi & Lei Sun, 2019. "Research on Cooperative Planning of Distributed Generation Access to AC/DC Distribution (Micro) Grids Based on Analytical Target Cascading," Energies, MDPI, vol. 12(10), pages 1-20, May.
    3. Muhammad Saad & Yongfeng Ju & Husan Ali & Sami Ullah Jan & Dawar Awan & Shahbaz Khan & Abdul Wadood & Bakht Muhammad Khan & Akhtar Ali & Tahir Khurshaid, 2021. "Behavioral Modeling Paradigm for DC Nanogrid Based Distributed Energy Systems," Energies, MDPI, vol. 14(23), pages 1-20, November.
    4. Al Faris Habibullah & Seung-Jin Yoon & Thuy Vi Tran & Yubin Kim & Dat Thanh Tran & Kyeong-Hwa Kim, 2022. "The Recent Development of Power Electronics and AC Machine Drive Systems," Energies, MDPI, vol. 15(21), pages 1-8, October.
    5. Anuoluwapo Aluko & Elutunji Buraimoh & Oluwafemi Emmanuel Oni & Innocent Ewean Davidson, 2022. "Advanced Distributed Cooperative Secondary Control of Islanded DC Microgrids," Energies, MDPI, vol. 15(11), pages 1-17, May.
    6. Hao Pan & Ming Ding & Anwei Chen & Rui Bi & Lei Sun & Shengliang Shi, 2018. "Research on Distributed Power Capacity and Site Optimization Planning of AC/DC Hybrid Micrograms Considering Line Factors," Energies, MDPI, vol. 11(8), pages 1-18, July.
    7. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "Power Flow Control Strategy and Reliable DC-Link Voltage Restoration for DC Microgrid under Grid Fault Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    8. Al Faris Habibullah & Faris Adnan Padhilah & Kyeong-Hwa Kim, 2021. "Decentralized Control of DC Microgrid Based on Droop and Voltage Controls with Electricity Price Consideration," Sustainability, MDPI, vol. 13(20), pages 1-29, October.
    9. Raquel Villena-Ruiz & Andrés Honrubia-Escribano & Emilio Gómez-Lázaro, 2023. "Solar PV and Wind Power as the Core of the Energy Transition: Joint Integration and Hybridization with Energy Storage Systems," Energies, MDPI, vol. 16(6), pages 1-5, March.
    10. Robert Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2017. "Experimental Study of a Centralized Control Strategy of a DC Microgrid Working in Grid Connected Mode," Energies, MDPI, vol. 10(10), pages 1-25, October.
    11. Robert Salas-Puente & Silvia Marzal & Raul Gonzalez-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Practical Analysis and Design of a Battery Management System for a Grid-Connected DC Microgrid for the Reduction of the Tariff Cost and Battery Life Maximization," Energies, MDPI, vol. 11(7), pages 1-31, July.
    12. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "An Improved Power Management Strategy for MAS-Based Distributed Control of DC Microgrid under Communication Network Problems," Sustainability, MDPI, vol. 12(1), pages 1-27, December.
    13. Nur Najihah Abu Bakar & Josep M. Guerrero & Juan C. Vasquez & Najmeh Bazmohammadi & Yun Yu & Abdullah Abusorrah & Yusuf A. Al-Turki, 2021. "A Review of the Conceptualization and Operational Management of Seaport Microgrids on the Shore and Seaside," Energies, MDPI, vol. 14(23), pages 1-31, November.
    14. Giuseppe Barone & Giovanni Brusco & Alessandro Burgio & Daniele Menniti & Anna Pinnarelli & Michele Motta & Nicola Sorrentino & Pasquale Vizza, 2018. "A Real-Life Application of a Smart User Network," Energies, MDPI, vol. 11(12), pages 1-23, December.
    15. Olanrewaju Lasabi & Andrew Swanson & Leigh Jarvis & Anuoluwapo Aluko, 2023. "Dynamic Distributed Collaborative Control for Equitable Current Distribution and Voltage Recovery in DC Microgrids," Energies, MDPI, vol. 16(18), pages 1-40, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5411-:d:872629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.