IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i1p344-d473787.html
   My bibliography  Save this article

Analyzing Temporal Variability in Inventory Data for Life Cycle Assessment: Implications in the Context of Circular Economy

Author

Listed:
  • Sayyed Shoaib-ul-Hasan

    (Department of Production Engineering, KTH Royal Institute of Technology, Brinellvägen 68, 100 44 Stockholm, Sweden)

  • Malvina Roci

    (Department of Production Engineering, KTH Royal Institute of Technology, Brinellvägen 68, 100 44 Stockholm, Sweden)

  • Farazee M. A. Asif

    (Department of Production Engineering, KTH Royal Institute of Technology, Brinellvägen 68, 100 44 Stockholm, Sweden)

  • Niloufar Salehi

    (Department of Production Engineering, KTH Royal Institute of Technology, Brinellvägen 68, 100 44 Stockholm, Sweden)

  • Amir Rashid

    (Department of Production Engineering, KTH Royal Institute of Technology, Brinellvägen 68, 100 44 Stockholm, Sweden)

Abstract

Life cycle assessment (LCA) is used frequently as a decision support tool for evaluating different design choices for products based on their environmental impacts. A life cycle usually comprises several phases of varying timespans. The amount of emissions generated from different life cycle phases of a product could be significantly different from one another. In conventional LCA, the emissions generated from the life cycle phases of a product are aggregated at the inventory analysis stage, which is then used as an input for life cycle impact assessment. However, when the emissions are aggregated, the temporal variability of inventory data is ignored, which may result in inaccurate environmental impact assessment. Besides, the conventional LCA does not consider the environmental impact of circular products with multiple use cycles. It poses difficulties in identifying the hotspots of emission-intensive activities with the potential to mislead conclusions and implications for both practice and policy. To address this issue and to analyze the embedded temporal variations in inventory data in a CE context, the paper proposes calculating the emission intensity for each life cycle phase. It is argued that calculating and comparing emission intensity, based on the timespan and amount of emissions for individual life cycle phases, at the inventory analysis stage of LCA offers a complementary approach to the traditional aggregate emission-based LCA approach. In a circular scenario, it helps to identify significant issues during different life cycle phases and the relevant environmental performance improvement opportunities through product, business model, and supply chain design.

Suggested Citation

  • Sayyed Shoaib-ul-Hasan & Malvina Roci & Farazee M. A. Asif & Niloufar Salehi & Amir Rashid, 2021. "Analyzing Temporal Variability in Inventory Data for Life Cycle Assessment: Implications in the Context of Circular Economy," Sustainability, MDPI, vol. 13(1), pages 1-12, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:1:p:344-:d:473787
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/344/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/344/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
    2. J. W. Owens, 1997. "Life‐Cycle Assessment in Relation to Risk Assessment: An Evolving Perspective," Risk Analysis, John Wiley & Sons, vol. 17(3), pages 359-365, June.
    3. Shelie A. Miller & Stephen Moysey & Benjamin Sharp & Jose Alfaro, 2013. "A Stochastic Approach to Model Dynamic Systems in Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 17(3), pages 352-362, June.
    4. J. W. Owens, 1997. "Life‐Cycle Assessment: Constraints on Moving from Inventory to Impact Assessment," Journal of Industrial Ecology, Yale University, vol. 1(1), pages 37-49, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albers, Ariane & Collet, Pierre & Lorne, Daphné & Benoist, Anthony & Hélias, Arnaud, 2019. "Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France," Applied Energy, Elsevier, vol. 239(C), pages 316-330.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    4. Thomas Beaussier & Sylvain Caurla & Véronique Bellon Maurel & Eléonore Loiseau, 2019. "Coupling economic models and environmental assessment methods to support regional policies : A critical review," Post-Print hal-02021423, HAL.
    5. Xizhuo Zhang & Longfei Zhang & Yujun Yuan & Qiang Zhai, 2020. "Life Cycle Assessment on Wave and Tidal Energy Systems: A Review of Current Methodological Practice," IJERPH, MDPI, vol. 17(5), pages 1-13, March.
    6. Kong, Minjin & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon, 2021. "Development of a framework for evaluating the contents and usability of the building life cycle assessment tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    8. Pau Fonseca i Casas & Antoni Fonseca i Casas, 2017. "Using Specification and Description Language for Life Cycle Assesment in Buildings," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    9. Alejandro Padilla-Rivera & Ben Amor & Pierre Blanchet, 2018. "Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    10. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    11. Belflower, Jeff B. & Bernard, John K. & Gattie, David K. & Hancock, Dennis W. & Risse, Lawrence M. & Alan Rotz, C., 2012. "A case study of the potential environmental impacts of different dairy production systems in Georgia," Agricultural Systems, Elsevier, vol. 108(C), pages 84-93.
    12. Qianmiao Yang & Liyao Kong & Hui Tong & Xiaolin Wang, 2020. "Evaluation Model of Environmental Impacts of Insulation Building Envelopes," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    13. Mastrucci, Alessio & Marvuglia, Antonino & Benetto, Enrico & Leopold, Ulrich, 2020. "A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    14. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2017. "Emergy analysis of three alternative carbon dioxide capture processes," Energy, Elsevier, vol. 128(C), pages 101-108.
    15. Kissinger, Meidad & Rees, William E., 2010. "An interregional ecological approach for modelling sustainability in a globalizing world—Reviewing existing approaches and emerging directions," Ecological Modelling, Elsevier, vol. 221(21), pages 2615-2623.
    16. Dias, Pablo R. & Schmidt, Lucas & Chang, Nathan L. & Monteiro Lunardi, Marina & Deng, Rong & Trigger, Blair & Bonan Gomes, Lucas & Egan, Renate & Veit, Hugo, 2022. "High yield, low cost, environmentally friendly process to recycle silicon solar panels: Technical, economic and environmental feasibility assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    17. Bichraoui-Draper, Najet & Xu, Ming & Miller, Shelie A. & Guillaume, Bertrand, 2015. "Agent-based life cycle assessment for switchgrass-based bioenergy systems," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 171-178.
    18. Ashok Kumar & Pardeep Singh & Nishant Raj Kapoor & Chandan Swaroop Meena & Kshitij Jain & Kishor S. Kulkarni & Raffaello Cozzolino, 2021. "Ecological Footprint of Residential Buildings in Composite Climate of India—A Case Study," Sustainability, MDPI, vol. 13(21), pages 1-25, October.
    19. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2017. "Modeling the energy and environmental life cycle of buildings: A co-simulation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 733-742.
    20. Henrik Engelbrecht Foldager & Rasmus Camillus Jeppesen & Muhyiddine Jradi, 2019. "DanRETRO: A Decision-Making Tool for Energy Retrofit Design and Assessment of Danish Buildings," Sustainability, MDPI, vol. 11(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:1:p:344-:d:473787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.