IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10876-d647141.html
   My bibliography  Save this article

Analyzing the Barriers to Reverse Logistics (RL) Implementation: A Hybrid Model Based on IF-DEMATEL-EDAS

Author

Listed:
  • Chukwuebuka M. U-Dominic

    (Department of Industrial and Production Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka 5025, Nigeria)

  • Ifeyinwa Juliet Orji

    (Research Center for Smarter Supply Chain, School of Business, Soochow University, Suzhou 215006, China)

  • Modestus Okwu

    (Department of Mechanical Engineering, Federal University of Petroleum Resources, Effurun 330102, Nigeria)

Abstract

Recently, manufacturing companies aspire to implement reverse logistics in response to stakeholders’ requirements to reduce negative environmental consequences, improve organizational sustainable performance and ultimately increase competitive advantage. However, implementing reverse logistics can be impeded by a criteria framework, and necessitates the careful analysis of how such criteria interact with each other in the presence of uncertainty. Thus, in this study, we propose an integrated multi- criteria decision-making (MCDM) methodology that leverages the Decision Making Trial and Evaluation Laboratory (DEMATEL) under Intuitionistic Fuzzy (IF) environment and Evaluation Based on Distance to Average Solution (EDAS). Within the proposed methodology, firstly, the IF-DEMATEL is applied to obtain the interrelationships between the criteria/barriers and then, the EDAS method is applied to prioritize the criteria based on the appraisal scores evaluation. An application case within the Nigerian manufacturing sector was utilized to illustrate the viability of the proposed methodology. The study results indicate that the highly prioritized barriers to implementing reverse logistics within the Nigerian manufacturing sector include low product quality, risk of storing hazardous materials and low technical expertise. Consequently, this study makes a profound contribution to the theory and practice of reverse logistics by presenting an integrated MCDM methodology that can effectively address the criticality of barriers in the way of reverse logistics progression in a complex and uncertain scenario.

Suggested Citation

  • Chukwuebuka M. U-Dominic & Ifeyinwa Juliet Orji & Modestus Okwu, 2021. "Analyzing the Barriers to Reverse Logistics (RL) Implementation: A Hybrid Model Based on IF-DEMATEL-EDAS," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10876-:d:647141
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nima Kazemi & Nikunja Mohan Modak & Kannan Govindan, 2019. "A review of reverse logistics and closed loop supply chain management studies published in IJPR: a bibliometric and content analysis," International Journal of Production Research, Taylor & Francis Journals, vol. 57(15-16), pages 4937-4960, August.
    2. Bouzon, Marina & Govindan, Kannan & Rodriguez, Carlos M.Taboada & Campos, Lucila M.S., 2016. "Identification and analysis of reverse logistics barriers using fuzzy Delphi method and AHP," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 182-197.
    3. Alam, Shahriar Tanvir & Ahmed, Sayem & Ali, Syed Mithun & Sarker, Sudipa & Kabir, Golam & ul-Islam, Asif, 2021. "Challenges to COVID-19 vaccine supply chain: Implications for sustainable development goals," International Journal of Production Economics, Elsevier, vol. 239(C).
    4. Kumaraguru Mahadevan, 2019. "Collaboration in reverse: a conceptual framework for reverse logistics operations," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 68(2), pages 482-504, January.
    5. Simonov Kusi-Sarpong & Himanshu Gupta & Joseph Sarkis, 2019. "A supply chain sustainability innovation framework and evaluation methodology," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 1990-2008, April.
    6. Gupta, Himanshu & Barua, Mukesh Kumar, 2016. "Identifying enablers of technological innovation for Indian MSMEs using best–worst multi criteria decision making method," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 69-79.
    7. Kannan Govindan & Vernika Agarwal & Jyoti Dhingra Darbari & P. C. Jha, 2019. "An integrated decision making model for the selection of sustainable forward and reverse logistic providers," Annals of Operations Research, Springer, vol. 273(1), pages 607-650, February.
    8. Ifeyinwa Juliet Orji & Simonov Kusi-Sarpong & Himanshu Gupta, 2020. "The critical success factors of using social media for supply chain social sustainability in the freight logistics industry," International Journal of Production Research, Taylor & Francis Journals, vol. 58(5), pages 1522-1539, March.
    9. Md. Abdul Moktadir & Towfique Rahman & Syed Mithun Ali & Nazmun Nahar & Sanjoy Kumar Paul, 2020. "Examining barriers to reverse logistics practices in the leather footwear industry," Annals of Operations Research, Springer, vol. 293(2), pages 715-746, October.
    10. Orji, Ifeyinwa Juliet & Liu, Shaoxuan, 2020. "A dynamic perspective on the key drivers of innovation-led lean approaches to achieve sustainability in manufacturing supply chain," International Journal of Production Economics, Elsevier, vol. 219(C), pages 480-496.
    11. Jamal Elbaz & Regina Frei & Issam Laguir, 2018. "Reverse supply chain practices in developing countries: the case of Morocco," Post-Print hal-02051303, HAL.
    12. Asante, Dennis & He, Zheng & Adjei, Nana Osae & Asante, Bismark, 2020. "Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method," Energy Policy, Elsevier, vol. 142(C).
    13. Cricelli, Livio & Greco, Marco & Grimaldi, Michele, 2021. "An investigation on the effect of inter-organizational collaboration on reverse logistics," International Journal of Production Economics, Elsevier, vol. 240(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rashmi Ranjan Swain & Swagatika Mishra & S. S. Mahapatra, 2024. "An integrated BWM–SWARA approach to identify barriers in implementing reverse logistics for an effective supply chain management: a critical study of five bottle manufacturing companies in Odisha (Ind," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4495-4511, September.
    2. Yu-Lan Wang & Chin-Nung Liao, 2023. "Assessment of Sustainable Reverse Logistic Provider Using the Fuzzy TOPSIS and MSGP Framework in Food Industry," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    3. Dragan Pamučar & Masoud Behzad & Miljojko Janosevic & Claudia Andrea Aburto Araneda, 2022. "A Multi-Criteria Decision-Making Framework for Prioritizing and Overcoming Sectoral Barriers in Converting Agricultural Residues to a Building Material," Mathematics, MDPI, vol. 10(21), pages 1-16, October.
    4. Nebojša Brkljač & Milan Delić & Marko Orošnjak & Nenad Medić & Slavko Rakić & Ljiljana Popović, 2024. "Interdependent Influences of Reverse Logistics Implementation Barriers in the Conditions of an Emerging Economy," Mathematics, MDPI, vol. 12(16), pages 1-19, August.
    5. Mpho Sharon Makgedi Makaleng & Progress Hove-Sibanda, 2022. "Reverse Logistics Strategies and Their Effect on the Competitiveness of Fast-Moving Consumer Goods Firms in South Africa," Logistics, MDPI, vol. 6(3), pages 1-26, August.
    6. Mladen Krstić & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Snežana Tadić & Violeta Roso, 2022. "Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    7. Ahmed Dabees & Mahmoud Barakat & Sahar Sobhy Elbarky & Andrej Lisec, 2023. "A Framework for Adopting a Sustainable Reverse Logistics Service Quality for Reverse Logistics Service Providers: A Systematic Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    8. Dariusz Kacprzak, 2024. "A new extension of the EDAS method in a fuzzy environment for group decision-making," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 51(3), pages 263-277, September.
    9. Margarida Pimentel & Amílcar Arantes & Carlos Oliveira Cruz, 2022. "Barriers to the Adoption of Reverse Logistics in the Construction Industry: A Combined ISM and MICMAC Approach," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    10. Gemechu Abdissa & Abebe Ayalew & Anna Dunay & Csaba Bálint Illés, 2022. "Role of Reverse Logistics Activities in the Recycling of Used Plastic Bottled Water Waste Management," Sustainability, MDPI, vol. 14(13), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kusi-Sarpong, Simonov & Orji, Ifeyinwa Juliet & Gupta, Himanshu & Kunc, Martin, 2021. "Risks associated with the implementation of big data analytics in sustainable supply chains," Omega, Elsevier, vol. 105(C).
    2. Orji, Ifeyinwa Juliet & Kusi-Sarpong, Simonov & Huang, Shuangfa & Vazquez-Brust, Diego, 2020. "Evaluating the factors that influence blockchain adoption in the freight logistics industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    3. Mohammadi, Majid & Rezaei, Jafar, 2020. "Bayesian best-worst method: A probabilistic group decision making model," Omega, Elsevier, vol. 96(C).
    4. Muhammad Hamza Naseem & Jiaqi Yang & Ziquan Xiang, 2021. "Prioritizing the Solutions to Reverse Logistics Barriers for the E-Commerce Industry in Pakistan Based on a Fuzzy AHP-TOPSIS Approach," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    5. Kumar, Anish & Mangla, Sachin Kumar & Kumar, Pradeep & Song, Malin, 2021. "Mitigate risks in perishable food supply chains: Learning from COVID-19," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    6. Malacina, Iryna & Teplov, Roman, 2022. "Supply chain innovation research: A bibliometric network analysis and literature review," International Journal of Production Economics, Elsevier, vol. 251(C).
    7. Veronica Scuotto & Tachia Chin & Alberto Pezzi & Marco Pironti, 2022. "CSR best practices for global multi‐tier sustainable supply chain integration of Chinese MNEs," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(6), pages 2038-2052, November.
    8. Juliet Orji, Ifeyinwa & Ojadi, Frank & Kalu Okwara, Ukoha, 2022. "The nexus between e-commerce adoption in a health pandemic and firm performance: The role of pandemic response strategies," Journal of Business Research, Elsevier, vol. 145(C), pages 616-635.
    9. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    10. Salehi-Amiri, Amirhossein & Zahedi, Ali & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa, 2021. "Designing a sustainable closed-loop supply chain network for walnut industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Hossein Yousefi & Mohammad Hasan Ghodusinejad & Armin Ghodrati, 2022. "Multi-Criteria Future Energy System Planning and Analysis for Hot Arid Areas of Iran," Energies, MDPI, vol. 15(24), pages 1-25, December.
    12. Salimi, Negin & Rezaei, Jafar, 2018. "Evaluating firms’ R&D performance using best worst method," Evaluation and Program Planning, Elsevier, vol. 66(C), pages 147-155.
    13. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    14. Govindan, Kannan & Salehian, Farhad & Kian, Hadi & Hosseini, Seyed Teimoor & Mina, Hassan, 2023. "A location-inventory-routing problem to design a circular closed-loop supply chain network with carbon tax policy for achieving circular economy: An augmented epsilon-constraint approach," International Journal of Production Economics, Elsevier, vol. 257(C).
    15. Marcela Marçal Alves Pinto & João Luiz Kovaleski & Rui Tadashi Yoshino & Regina Negri Pagani, 2019. "Knowledge and Technology Transfer Influencing the Process of Innovation in Green Supply Chain Management: A Multicriteria Model Based on the DEMATEL Method," Sustainability, MDPI, vol. 11(12), pages 1-33, June.
    16. Qinglan Liu & Longjian Yang & Miying Yang, 2021. "Digitalisation for Water Sustainability: Barriers to Implementing Circular Economy in Smart Water Management," Sustainability, MDPI, vol. 13(21), pages 1-28, October.
    17. Jun-bin Wang & Lufei Huang, 2021. "A Game-Theoretic Analytical Approach for Fostering Energy-Saving Innovation in the Electric Vehicle Supply Chain," SAGE Open, , vol. 11(2), pages 21582440211, June.
    18. Xu-Hui Li & Lin Huang & Qiang Li & Hu-Chen Liu, 2020. "Passenger Satisfaction Evaluation of Public Transportation Using Pythagorean Fuzzy MULTIMOORA Method under Large Group Environment," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    19. Hariyani, Dharmendra & Mishra, Sanjeev & Hariyani, Poonam & Sharma, Milind Kumar, 2023. "Drivers and motives for sustainable manufacturing system," Innovation and Green Development, Elsevier, vol. 2(1).
    20. Nebojša Brkljač & Milan Delić & Marko Orošnjak & Nenad Medić & Slavko Rakić & Ljiljana Popović, 2024. "Interdependent Influences of Reverse Logistics Implementation Barriers in the Conditions of an Emerging Economy," Mathematics, MDPI, vol. 12(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10876-:d:647141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.