IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i21p4003-d956274.html
   My bibliography  Save this article

A Multi-Criteria Decision-Making Framework for Prioritizing and Overcoming Sectoral Barriers in Converting Agricultural Residues to a Building Material

Author

Listed:
  • Dragan Pamučar

    (Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia)

  • Masoud Behzad

    (School of Industrial Engineering, Faculty of Engineering, Universidad de Valparaíso, Valparaíso 46383, Chile)

  • Miljojko Janosevic

    (Military Medical Academy, 17 Crnotravska St., 11040 Belgrade, Serbia)

  • Claudia Andrea Aburto Araneda

    (School of Industrial Engineering, Faculty of Engineering, Universidad de Valparaíso, Valparaíso 46383, Chile)

Abstract

Biological products utilization are increasingly encouraged in different sectors such as building construction to facilitate moving towards a circular economy. However, this task is facing several barriers in supply chain and construction sectors. This study identified common barriers in converting agricultural residues to building materials and products in the agriculture sector, transportation, and manufacturing, as well as construction and operation phases in the building sector. The feasibility level to overcome the barriers has been scored. In addition, the barriers and sectors have been prioritized through ordinal priority approach. The results ranked the priority of the barriers as technology (0.3083), policy (0.2211), knowledge (0.1972), cost (0.1500), social and cultural (0.0739), and infrastructure (0.0494). Sectors were ranked in feasibility level to overcome the barriers from lowest to highest as operating, construction, manufacturing, transport, and agriculture. It is recommended to local communities to give priority to the building sector rather than supply chain and work under an integrated framework to enhance the feasibility level, which should include localization, prevention, collaboration, and digitalization. In particular, Chile should promote converting agricultural residues to building products as the project aligns with several initiatives existing in its circular economy roadmap.

Suggested Citation

  • Dragan Pamučar & Masoud Behzad & Miljojko Janosevic & Claudia Andrea Aburto Araneda, 2022. "A Multi-Criteria Decision-Making Framework for Prioritizing and Overcoming Sectoral Barriers in Converting Agricultural Residues to a Building Material," Mathematics, MDPI, vol. 10(21), pages 1-16, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4003-:d:956274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/21/4003/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/21/4003/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karan, Shivesh Kishore & Hamelin, Lorie, 2020. "Crop residues are a key feedstock to bioeconomy but available methods for their estimation are highly uncertain," Earth Arxiv ds8v4, Center for Open Science.
    2. Wen-Kuo Chen & Ching-Torng Lin, 2021. "Interrelationship among CE Adoption Obstacles of Supply Chain in the Textile Sector: Based on the DEMATEL-ISM Approach," Mathematics, MDPI, vol. 9(12), pages 1-24, June.
    3. Ratapol Wudhikarn & Nopasit Chakpitak & Gilles Neubert, 2020. "Improving the Strategic Benchmarking of Intellectual Capital Management in Logistics Service Providers," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    4. Chukwuebuka M. U-Dominic & Ifeyinwa Juliet Orji & Modestus Okwu, 2021. "Analyzing the Barriers to Reverse Logistics (RL) Implementation: A Hybrid Model Based on IF-DEMATEL-EDAS," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    5. Liu, LiFang & Li, HongQiang & Lazzaretto, Andrea & Manente, Giovanni & Tong, ChunYi & Liu, QiBin & Li, NianPing, 2017. "The development history and prospects of biomass-based insulation materials for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 912-932.
    6. Ratapol Wudhikarn & Nopasit Chakpitak & Gilles Neubert, 2020. "Improving the Strategic Benchmarking of Intellectual Capital Management in Logistics Service Providers," Post-Print hal-03188190, HAL.
    7. Mahmoudi, Amin & Javed, Saad Ahmed, 2022. "Performance Evaluation of Construction Sub‐contractors using Ordinal Priority Approach," Evaluation and Program Planning, Elsevier, vol. 91(C).
    8. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laila Oubahman & Szabolcs Duleba, 2022. "A Comparative Analysis of Homogenous Groups’ Preferences by Using AIP and AIJ Group AHP-PROMETHEE Model," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    2. Vikas Swarnakar & Amit Raj Singh & Jiju Antony & Raja Jayaraman & Anil Kr Tiwari & Rajeev Rathi & Elizabeth Cudney, 2022. "Prioritizing Indicators for Sustainability Assessment in Manufacturing Process: An Integrated Approach," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    3. Yixin Wang & Jialu Ren & Lin Zhang & Delin Liu, 2022. "Research on Resilience Evaluation of Green Building Supply Chain Based on ANP-Fuzzy Model," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    4. Bo-Rui Yan & Qian-Li Dong & Qian Li & Min Li, 2022. "A Study on Risk Measurement of Logistics in International Trade: A Case Study of the RCEP Countries," Sustainability, MDPI, vol. 14(5), pages 1-13, February.
    5. Yongwei Shi & Jing Zhang & Xufeng Cui & Guanghong Zhang, 2022. "Evaluating Sustainability of Tourism Projects in Rural Land Development Base on a Resilience Model," Land, MDPI, vol. 11(12), pages 1-20, December.
    6. Mladen Krstić & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Snežana Tadić & Violeta Roso, 2022. "Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    7. Babak Daneshvar Rouyendegh & Şeyda Savalan, 2022. "An Integrated Fuzzy MCDM Hybrid Methodology to Analyze Agricultural Production," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    8. Rashmi Ranjan Swain & Swagatika Mishra & S. S. Mahapatra, 2024. "An integrated BWM–SWARA approach to identify barriers in implementing reverse logistics for an effective supply chain management: a critical study of five bottle manufacturing companies in Odisha (Ind," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4495-4511, September.
    9. Iraj Mohammadfam & Ali Asghar Khajevandi & Hesam Dehghani & Mohammad Babamiri & Maryam Farhadian, 2022. "Analysis of Factors Affecting Human Reliability in the Mining Process Design Using Fuzzy Delphi and DEMATEL Methods," Sustainability, MDPI, vol. 14(13), pages 1-19, July.
    10. Alptekin Ulutaş & Ayşe Topal & Dragan Pamučar & Željko Stević & Darjan Karabašević & Gabrijela Popović, 2022. "A New Integrated Multi-Criteria Decision-Making Model for Sustainable Supplier Selection Based on a Novel Grey WISP and Grey BWM Methods," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    11. James J. H. Liou & Perry C. Y. Liu & Huai-Wei Lo, 2020. "A Failure Mode Assessment Model Based on Neutrosophic Logic for Switched-Mode Power Supply Risk Analysis," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    12. Junnan Wu & Xin Liu & Dianqi Pan & Yichen Zhang & Jiquan Zhang & Kai Ke, 2023. "Research on Safety Evaluation of Municipal Sewage Treatment Plant Based on Improved Best-Worst Method and Fuzzy Comprehensive Method," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    13. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    14. Sarfaraz Hashemkhani Zolfani & Ramin Bazrafshan & Fatih Ecer & Çağlar Karamaşa, 2022. "The Suitability-Feasibility-Acceptability Strategy Integrated with Bayesian BWM-MARCOS Methods to Determine the Optimal Lithium Battery Plant Located in South America," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    15. Paul, Ananna & Shukla, Nagesh & Trianni, Andrea, 2023. "Modelling supply chain sustainability challenges in the food processing sector amid the COVID-19 outbreak," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    16. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    17. Pushparenu Bhattacharjee & Syed Abou Iltaf Hussain & V. Dey & U. K. Mandal, 2023. "Failure mode and effects analysis for submersible pump component using proportionate risk assessment model: a case study in the power plant of Agartala," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1778-1798, October.
    18. Dilupa Nakandala & Yung Po Tsang & Henry Lau & Carman Ka Man Lee, 2022. "An Industrial Blockchain-Based Multi-Criteria Decision Framework for Global Freight Management in Agricultural Supply Chains," Mathematics, MDPI, vol. 10(19), pages 1-23, September.
    19. Martín-García, Jaime & Gómez-Limón, José A. & Arriaza, Manuel, 2024. "Conversion to organic farming: Does it change the economic and environmental performance of fruit farms?," Ecological Economics, Elsevier, vol. 220(C).
    20. Zeng, Shouzhen & Zhou, Jiamin & Zhang, Chonghui & Merigó, José M., 2022. "Intuitionistic fuzzy social network hybrid MCDM model for an assessment of digital reforms of manufacturing industry in China," Technological Forecasting and Social Change, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4003-:d:956274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.