IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10765-d644972.html
   My bibliography  Save this article

Revalorization of Pleurotus djamor Fungus Culture: Fungus-Derived Carbons for Supercapacitor Application

Author

Listed:
  • Paola Navid García-Hernández

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, Parque Científico Tecnológico de Yucatán, Carretera Sierra Papacal-Chuburná Puerto, Km5, Mérida 97302, Mexico)

  • José Martín Baas-López

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, Parque Científico Tecnológico de Yucatán, Carretera Sierra Papacal-Chuburná Puerto, Km5, Mérida 97302, Mexico)

  • Tanit Toledano-Thompson

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, Parque Científico Tecnológico de Yucatán, Carretera Sierra Papacal-Chuburná Puerto, Km5, Mérida 97302, Mexico)

  • Ruby Valdez-Ojeda

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, Parque Científico Tecnológico de Yucatán, Carretera Sierra Papacal-Chuburná Puerto, Km5, Mérida 97302, Mexico)

  • Daniella Pacheco-Catalán

    (Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, Parque Científico Tecnológico de Yucatán, Carretera Sierra Papacal-Chuburná Puerto, Km5, Mérida 97302, Mexico)

Abstract

Currently, there is increasing interest and effort directed to developing sustainable processes, including in waste management and energy production and storage, among others. In this research, corn cobs were used as a substrate for the cultivation of Pleurotus djamor , a suitable feedstock for the management of these agricultural residues. Revalorization of this fungus, as an environmentally friendly carbon precursor, was executed by taking advantage of the intrinsic characteristics of the fungus, such as its porosity. Obtaining fungus-derived porous carbons was achieved by hydrothermal activation with KOH and subsequent pyrolysis at 600, 800, and 1000 °C in an argon atmosphere. The morphologies of the fungal biomass and fungus-derived carbons both exhibited, on their surfaces, certain amorphous similarities in their pores, indicating that the porous base matrix of the fungus was maintained despite carbonization. From all fungus-derived carbons, PD1000 exhibited the largest superficial area, with 612 m 2 g −1 and a pore size between 3 and 4 nm recorded. Electrochemical performance was evaluated in a three-electrode cell, and capacitance was calculated by cyclic voltammetry; a capacitance of 60 F g −1 for PD1000 was recorded. Other results suggested that PD1000 had a fast ion-diffusion transfer rate and high electronic conductivity. Ultimately, Pleurotus djamor biomass is a suitable feedstock for obtaining carbon in a sustainable way, and it features a defined intrinsic structure for potential energy storage applications, such as electrodes in supercapacitors.

Suggested Citation

  • Paola Navid García-Hernández & José Martín Baas-López & Tanit Toledano-Thompson & Ruby Valdez-Ojeda & Daniella Pacheco-Catalán, 2021. "Revalorization of Pleurotus djamor Fungus Culture: Fungus-Derived Carbons for Supercapacitor Application," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10765-:d:644972
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kwadwo Mensah-Darkwa & Camila Zequine & Pawan K. Kahol & Ram K. Gupta, 2019. "Supercapacitor Energy Storage Device Using Biowastes: A Sustainable Approach to Green Energy," Sustainability, MDPI, vol. 11(2), pages 1-22, January.
    2. Manfredi Picciotto Maniscalco & Maurizio Volpe & Antonio Messineo, 2020. "Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review," Energies, MDPI, vol. 13(16), pages 1-26, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leslie Lara-Ramos & Ana Cervera-Mata & Jesús Fernández-Bayo & Miguel Navarro-Alarcón & Gabriel Delgado & Alejandro Fernández-Arteaga, 2023. "Hydrochars Derived from Spent Coffee Grounds as Zn Bio-Chelates for Agronomic Biofortification," Sustainability, MDPI, vol. 15(13), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    2. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    3. Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.
    4. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    5. Chien, FengSheng & Paramaiah, Ch & joseph, Robinson & Pham, Hong Chuong & Phan, Thi Thu Hien & Ngo, Thanh Quang, 2023. "The impact of eco-innovation, trade openness, financial development, green energy and government governance on sustainable development in ASEAN countries," Renewable Energy, Elsevier, vol. 211(C), pages 259-268.
    6. Wei, Yingyuan & Fakudze, Sandile & Zhang, Yiming & Ma, Ru & Shang, Qianqian & Chen, Jianqiang & Liu, Chengguo & Chu, Qiulu, 2022. "Co-hydrothermal carbonization of pomelo peel and PVC for production of hydrochar pellets with enhanced fuel properties and dechlorination," Energy, Elsevier, vol. 239(PD).
    7. M. Toufiq Reza, 2022. "Hydrothermal Carbonization," Energies, MDPI, vol. 15(15), pages 1-3, July.
    8. Pongsun Bunditsakulchai & Chen Liu, 2021. "Integrated Strategies for Household Food Waste Reduction in Bangkok," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    9. Kuan-Ching Lee & Mitchell Shyan Wei Lim & Zhong-Yun Hong & Siewhui Chong & Timm Joyce Tiong & Guan-Ting Pan & Chao-Ming Huang, 2021. "Coconut Shell-Derived Activated Carbon for High-Performance Solid-State Supercapacitors," Energies, MDPI, vol. 14(15), pages 1-11, July.
    10. Nourhen Hsini & Vahid Saadattalab & Xia Wang & Nawres Gharred & Hatem Dhaouadi & Sonia Dridi-Dhaouadi & Niklas Hedin, 2022. "Activated Carbons Produced from Hydrothermally Carbonized Prickly Pear Seed Waste," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    11. Nantikron Ngamjumrus & Kanyapak Silakaew & Somphob Thompho & Chaval Sriwong & Chesta Ruttanapun, 2023. "Two Steps for Improving Reduced Graphene Oxide/Activated Durian Shell Carbon Composite by Hydrothermal and 3-D Ball Milling Process for Symmetry Supercapacitor Device," Energies, MDPI, vol. 16(19), pages 1-20, October.
    12. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
    13. Gregor Sailer & Julian Comi & Florian Empl & Martin Silberhorn & Valeska Heymann & Monika Bosilj & Siham Ouardi & Stefan Pelz & Joachim Müller, 2022. "Hydrothermal Treatment of Residual Forest Wood (Softwood) and Digestate from Anaerobic Digestion—Influence of Temperature and Holding Time on the Characteristics of the Solid and Liquid Products," Energies, MDPI, vol. 15(10), pages 1-26, May.
    14. Md Tahmid Islam & Al Ibtida Sultana & Cadianne Chambers & Swarna Saha & Nepu Saha & Kawnish Kirtania & M. Toufiq Reza, 2022. "Recent Progress on Emerging Applications of Hydrochar," Energies, MDPI, vol. 15(24), pages 1-45, December.
    15. Richard Ochieng & Alemayehu Gebremedhin & Shiplu Sarker, 2022. "Integration of Waste to Bioenergy Conversion Systems: A Critical Review," Energies, MDPI, vol. 15(7), pages 1-22, April.
    16. Rahimi, Mohammad & Abbaspour-Fard, Mohammad Hossein & Rohani, Abbas, 2021. "A multi-data-driven procedure towards a comprehensive understanding of the activated carbon electrodes performance (using for supercapacitor) employing ANN technique," Renewable Energy, Elsevier, vol. 180(C), pages 980-992.
    17. Michela Lucian & Fabio Merzari & Michele Gubert & Antonio Messineo & Maurizio Volpe, 2021. "Industrial-Scale Hydrothermal Carbonization of Agro-Industrial Digested Sludge: Filterability Enhancement and Phosphorus Recovery," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    18. Sivabalan Kaniapan & Jagadeesh Pasupuleti & Kartikeyan Patma Nesan & Haris Nalakath Abubackar & Hadiza Aminu Umar & Temidayo Lekan Oladosu & Segun R. Bello & Eldon R. Rene, 2022. "A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-Economic Assessment," IJERPH, MDPI, vol. 19(6), pages 1-30, March.
    19. Stergios Vakalis & Snehesh Shivananda Ail & Konstantinos Moustakas & Marco J. Castaldi, 2023. "Operation and Thermodynamic Modeling of a Novel Advanced Hydrothermal Reactor: Introduction of the Novel 3-Step Evolution Model," Energies, MDPI, vol. 16(4), pages 1-14, February.
    20. Paritosh, Kunwar & Bose, Archishman, 2024. "Application of biogenic carbon in renewable energy vectors and devices: A step forward to decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10765-:d:644972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.