IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4546-d602596.html
   My bibliography  Save this article

Coconut Shell-Derived Activated Carbon for High-Performance Solid-State Supercapacitors

Author

Listed:
  • Kuan-Ching Lee

    (Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga 43500, Malaysia)

  • Mitchell Shyan Wei Lim

    (Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga 43500, Malaysia)

  • Zhong-Yun Hong

    (Green Energy Technology Research Center and Department of Materials Engineering, Kun Shan University, Tainan 710, Taiwan)

  • Siewhui Chong

    (Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga 43500, Malaysia)

  • Timm Joyce Tiong

    (Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga 43500, Malaysia)

  • Guan-Ting Pan

    (Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan)

  • Chao-Ming Huang

    (Green Energy Technology Research Center and Department of Materials Engineering, Kun Shan University, Tainan 710, Taiwan)

Abstract

Coconut shells, low-cost and renewable agro-wastes, were used as a starting material in the synthesis of hierarchical activated carbons via hydrothermal, KOH-activation, and carbonization techniques. The ratio of KOH to hydrochar was varied in a systemic manner to study how it influences the texture and electrochemical behavior of the capacitor. Coconut shell-based carbon coated on nickel foams presented a surface area of 1567 m 2 g −1 , with micropores as well as mesopores widely distributed. The sample showed superior electrochemical performance, attaining 449 F g −1 at 1 A g −1 in 6 M LiNO 3 aqueous solution. The solid-state symmetric supercapacitor device delivered a specific capacitance of 88 F g −1 at 1 A g −1 and a high energy density of 48.9 Whkg −1 at a power density of 1 kW kg −1 . At a wide voltage window of 2.0 V, the sample was highly stable during the cycle test, showing a 92% capacitance retention at 2 A g −1 after cycling for 5000 times. The superior performance is due to the sample possessing great BET surface area, a good distribution of pores, and the usage of a suitable electrolyte. This facilitates an electrical double layer that can be deployed for applications to store energy.

Suggested Citation

  • Kuan-Ching Lee & Mitchell Shyan Wei Lim & Zhong-Yun Hong & Siewhui Chong & Timm Joyce Tiong & Guan-Ting Pan & Chao-Ming Huang, 2021. "Coconut Shell-Derived Activated Carbon for High-Performance Solid-State Supercapacitors," Energies, MDPI, vol. 14(15), pages 1-11, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4546-:d:602596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yahya, Mohd Adib & Al-Qodah, Z. & Ngah, C.W. Zanariah, 2015. "Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 218-235.
    2. Jakub Lach & Kamil Wróbel & Justyna Wróbel & Andrzej Czerwiński, 2021. "Applications of Carbon in Rechargeable Electrochemical Power Sources: A Review," Energies, MDPI, vol. 14(9), pages 1-29, May.
    3. Kwadwo Mensah-Darkwa & Camila Zequine & Pawan K. Kahol & Ram K. Gupta, 2019. "Supercapacitor Energy Storage Device Using Biowastes: A Sustainable Approach to Green Energy," Sustainability, MDPI, vol. 11(2), pages 1-22, January.
    4. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    5. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su-Jin Jang & Jeong Han Lee & Seo Hui Kang & Yun Chan Kang & Kwang Chul Roh, 2021. "Nitrogen-Doped and Carbon-Coated Activated Carbon as a Conductivity Additive-Free Electrode for Supercapacitors," Energies, MDPI, vol. 14(22), pages 1-10, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Guoyan & Liu, Zhanglin & He, Jinsong & Huang, Mei & Zhao, Li & Zou, Jianmei & Lei, Yongjia & Yang, Qiulin & Liu, Yan & Tian, Dong & Shen, Fei, 2024. "Modulating three-dimensional porous carbon from paper mulberry juice by a hydrothermal process for a supercapacitor with excellent performance," Renewable Energy, Elsevier, vol. 227(C).
    2. Antonio Picone & Maurizio Volpe & Antonio Messineo, 2021. "Process Water Recirculation during Hydrothermal Carbonization of Waste Biomass: Current Knowledge and Challenges," Energies, MDPI, vol. 14(10), pages 1-14, May.
    3. Francesca Lionetto & Sonia Bagheri & Claudio Mele, 2021. "Sustainable Materials from Fish Industry Waste for Electrochemical Energy Systems," Energies, MDPI, vol. 14(23), pages 1-19, November.
    4. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    6. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    7. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    8. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    9. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    10. Andrea G. Capodaglio & Gustaf Olsson, 2019. "Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    11. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    12. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    13. Sooraj Kumar & Suhail Ahmed Soomro & Khanji Harijan & Mohammad Aslam Uqaili & Laveet Kumar, 2023. "Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review," Energies, MDPI, vol. 16(2), pages 1-20, January.
    14. Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.
    15. Zhao, Ming & Memon, Muhammad Zaki & Ji, Guozhao & Yang, Xiaoxiao & Vuppaladadiyam, Arun K. & Song, Yinqiang & Raheem, Abdul & Li, Jinhui & Wang, Wei & Zhou, Hui, 2020. "Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production," Renewable Energy, Elsevier, vol. 148(C), pages 168-175.
    16. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    17. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    18. Alsulami, Radi A. & El-Sayed, Saad A. & Eltaher, Mohamed A. & Mohammad, Akram & Almitani, Khalid H. & Mostafa, Mohamed E., 2023. "Pyrolysis kinetics and thermal degradation characteristics of coffee, date seed, and prickly pear wastes and their blends," Renewable Energy, Elsevier, vol. 216(C).
    19. Hatem Abushammala & Muhammad Adil Masood & Salma Taqi Ghulam & Jia Mao, 2023. "On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    20. Sitek, Tomáš & Pospíšil, Jiří & Poláčik, Ján & Špiláček, Michal & Varbanov, Petar, 2019. "Fine combustion particles released during combustion of unit mass of beechwood," Renewable Energy, Elsevier, vol. 140(C), pages 390-396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4546-:d:602596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.