IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8674-d607817.html
   My bibliography  Save this article

Demand for Storage and Import of Natural Gas in China until 2060: Simulation with a Dynamic Model

Author

Listed:
  • Zhihua Chen

    (The Belt and Road School, Beijing Normal University, Beijing 100875, China)

  • Hui Wang

    (The Belt and Road School, Beijing Normal University, Beijing 100875, China)

  • Tongxia Li

    (The Belt and Road School, Beijing Normal University, Beijing 100875, China)

  • Ieongcheng Si

    (The Belt and Road School, Beijing Normal University, Beijing 100875, China)

Abstract

China has been reforming its domestic natural gas market in recent years, while construction of storage systems is lagging behind. As natural gas accounts for an increasing proportion due to the goal of carbon neutrality, large-scale gas storage appears to be necessary to satisfy the needs for gas peak shaving and national strategic security. Additionally, the domestic gas production in China cannot meet consumption demands, and imports will play a significant role on the supply side. This paper developed a system dynamics (SD) model and applied it to simulate gas market behaviors and estimated China’s gas storage capabilities and import demands over the next 40 years. To achieve carbon neutrality, it is necessary for China to make great progress in its energy intensity and improve its energy structure, which have a great impact on natural gas consumption. Thus, alternative scenarios were defined to discuss the changes in the gas market with different gas storage goals and environmental constraints. The results show that under low and medium carbon price scenarios, natural gas demand will continue to grow in the next 40 years, but it will be difficult to achieve the goal of carbon neutrality. Under the high carbon price scenario, natural gas consumption will grow rapidly and reach a peak in approximately 2040, after which renewable energy will play a more important role to help achieve carbon neutrality. At the peak time, China’s gas storage demand will be 205.5 billion cubic meters (bcm) and import demand will reach 635.4 bcm, accounting for 72.8% of total consumption. We also identified the contradiction between the estimated storage capability, import demand and infrastructure planning. There will be a gap of 28.1–69.3 bcm between the planned storage capacity and simulated demand by 2030, while import facilities may partly strand assets. Finally, we provided some policy recommendations for constructing gas storage and import management and operation systems.

Suggested Citation

  • Zhihua Chen & Hui Wang & Tongxia Li & Ieongcheng Si, 2021. "Demand for Storage and Import of Natural Gas in China until 2060: Simulation with a Dynamic Model," Sustainability, MDPI, vol. 13(15), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8674-:d:607817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8674/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8674/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiao, Jian-Ling & Han, Kuang-Yi & Wu, Gang & Li, Lan-Lan & Wei, Yi-Ming, 2014. "The effect of an SPR on the oil price in China: A system dynamics approach," Applied Energy, Elsevier, vol. 133(C), pages 363-373.
    2. Yu, Lean & Zhao, Yang & Tang, Ling, 2014. "A compressed sensing based AI learning paradigm for crude oil price forecasting," Energy Economics, Elsevier, vol. 46(C), pages 236-245.
    3. Kong Chyong Chi & David M. Reiner & William J. Nuttall, 2009. "Dynamics of the UK Natural Gas Industry: System Dynamics Modelling and Long-Term Energy Policy Analysis," Working Papers EPRG 0913, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Feng, Tian-tian & Yang, Yi-sheng & Xie, Shi-yan & Dong, Jun & Ding, Luo, 2017. "Economic drivers of greenhouse gas emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 996-1006.
    5. Ejarque, João Miguel, 2011. "Evaluating the economic cost of natural gas strategic storage restrictions," Energy Economics, Elsevier, vol. 33(1), pages 44-55, January.
    6. Yu, Feng & Xu, Xiaozhong, 2014. "A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network," Applied Energy, Elsevier, vol. 134(C), pages 102-113.
    7. Smekens-Ramirez Morales, Koen E. L., 2004. "Response from a MARKAL technology model to the EMF scenario assumptions," Energy Economics, Elsevier, vol. 26(4), pages 655-674, July.
    8. Zeng, Yaxiong & Klabjan, Diego & Arinez, Jorge, 2015. "Distributed solar renewable generation: Option contracts with renewable energy credit uncertainty," Energy Economics, Elsevier, vol. 48(C), pages 295-305.
    9. Zeren, Feyyaz & Akkuş, Hilmi Tunahan, 2020. "The relationship between renewable energy consumption and trade openness: New evidence from emerging economies," Renewable Energy, Elsevier, vol. 147(P1), pages 322-329.
    10. Flouri, Maria & Karakosta, Charikleia & Kladouchou, Charikleia & Psarras, John, 2015. "How does a natural gas supply interruption affect the EU gas security? A Monte Carlo simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 785-796.
    11. Anser, Muhammad Khalid & Yousaf, Zahid & Zaman, Khalid & Nassani, Abdelmohsen A. & Alotaibi, Saad M. & Jambari, Hanifah & Khan, Aqeel & Kabbani, Ahmad, 2020. "Determination of resource curse hypothesis in mediation of financial development and clean energy sources: Go-for-green resource policies," Resources Policy, Elsevier, vol. 66(C).
    12. Guo, Yingjian & Hawkes, Adam, 2019. "Asset stranding in natural gas export facilities: An agent-based simulation," Energy Policy, Elsevier, vol. 132(C), pages 132-155.
    13. Baranes, Edmond & Mirabel, François & Poudou, Jean-Christophe, 2014. "Access to natural gas storage facilities: Strategic and regulation issues," Energy Economics, Elsevier, vol. 41(C), pages 19-32.
    14. de Joode, J. & Özdemir, Ö., 2010. "Demand for seasonal gas storage in northwest Europe until 2030: Simulation results with a dynamic model," Energy Policy, Elsevier, vol. 38(10), pages 5817-5829, October.
    15. Edmond Baranes & François Mirabel & Jean-Christophe Poudou, 2014. "Access to natural gas storage facilities: Strategic and regulation issues," Post-Print hal-01810766, HAL.
    16. Malzi, Mohamed Jaouad & Sohag, Kazi & Vasbieva, Dinara G. & Ettahir, Aziz, 2020. "Environmental policy effectiveness on residential natural gas use in OECD countries," Resources Policy, Elsevier, vol. 66(C).
    17. Strachan, Neil & Kannan, Ramachandran, 2008. "Hybrid modelling of long-term carbon reduction scenarios for the UK," Energy Economics, Elsevier, vol. 30(6), pages 2947-2963, November.
    18. Askari, S. & Montazerin, N. & Zarandi, M.H. Fazel, 2015. "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems," Energy, Elsevier, vol. 83(C), pages 252-266.
    19. Quattrocchi, Fedora & Boschi, Enzo & Spena, Angelo & Buttinelli, Mauro & Cantucci, Barbara & Procesi, Monia, 2013. "Synergic and conflicting issues in planning underground use to produce energy in densely populated countries, as Italy," Applied Energy, Elsevier, vol. 101(C), pages 393-412.
    20. Weiwei Xiong & Liang Yan & Teng Wang & Yuguo Gao, 2020. "Substitution Effect of Natural Gas and the Energy Consumption Structure Transition in China," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    21. Hoffler, Felix & Kubler, Madjid, 2007. "Demand for storage of natural gas in northwestern Europe: Trends 2005-30," Energy Policy, Elsevier, vol. 35(10), pages 5206-5219, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi Yong & Mu Tong & Zhongyi Yang & Jixian Zhou, 2023. "Conventional Natural Gas Project Investment and Decision Making under Multiple Uncertainties," Energies, MDPI, vol. 16(5), pages 1-30, February.
    2. Adrian Neacsa & Cristian Nicolae Eparu & Doru Bogdan Stoica, 2022. "Hydrogen–Natural Gas Blending in Distribution Systems—An Energy, Economic, and Environmental Assessment," Energies, MDPI, vol. 15(17), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Huai & Zio, Enrico & Zhang, Jinjun & Xu, Mingjing & Li, Xueyi & Zhang, Zongjie, 2019. "A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model," Energy, Elsevier, vol. 178(C), pages 585-597.
    2. Devine, Mel T. & Russo, Marianna, 2019. "Liquefied natural gas and gas storage valuation: Lessons from the integrated Irish and UK markets," Applied Energy, Elsevier, vol. 238(C), pages 1389-1406.
    3. van Vliet, Oscar & van den Broek, Machteld & Turkenburg, Wim & Faaij, André, 2011. "Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage," Energy Policy, Elsevier, vol. 39(1), pages 248-268, January.
    4. Arnold, Lutz G. & Arnold, Volker, 2024. "Energy imports and manufacturing exports with successive oligopolies and storage," Energy Economics, Elsevier, vol. 133(C).
    5. Hendalianpour, Ayad & Liu, Peide & Amirghodsi, Sirous & Hamzehlou, Mohammad, 2022. "Designing a System Dynamics model to simulate criteria affecting oil and gas development contracts," Resources Policy, Elsevier, vol. 78(C).
    6. Jablonski, Sophie & Strachan, Neil & Brand, Christian & Bauen, Ausilio, 2010. "The role of bioenergy in the UK's energy future formulation and modelling of long-term UK bioenergy scenarios," Energy Policy, Elsevier, vol. 38(10), pages 5799-5816, October.
    7. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
    8. Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
    9. Kemal Sarıca & Wallace E. Tyner, 2016. "Economic Impacts of Increased U.S. Exports of Natural Gas: An Energy System Perspective," Energies, MDPI, vol. 9(6), pages 1-16, May.
    10. Yu, Weichao & Huang, Weihe & Wen, Yunhao & Li, Yichen & Liu, Hongfei & Wen, Kai & Gong, Jing & Lu, Yanan, 2021. "An integrated gas supply reliability evaluation method of the large-scale and complex natural gas pipeline network based on demand-side analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    11. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    12. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    13. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    14. Lu, Weiwei & Su, Meirong & Fath, Brian D. & Zhang, Mingqi & Hao, Yan, 2016. "A systematic method of evaluation of the Chinese natural gas supply security," Applied Energy, Elsevier, vol. 165(C), pages 858-867.
    15. Sarica, Kemal & Tyner, Wallace E., 2013. "Alternative policy impacts on US GHG emissions and energy security: A hybrid modeling approach," Energy Economics, Elsevier, vol. 40(C), pages 40-50.
    16. Wei Sun & Chongchong Zhang, 2018. "A Hybrid BA-ELM Model Based on Factor Analysis and Similar-Day Approach for Short-Term Load Forecasting," Energies, MDPI, vol. 11(5), pages 1-18, May.
    17. Zhongwei, Huang & Liu, Yishu, 2022. "The role of eco-innovations, trade openness, and human capital in sustainable renewable energy consumption: Evidence using CS-ARDL approach," Renewable Energy, Elsevier, vol. 201(P1), pages 131-140.
    18. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    19. Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
    20. Kazemzadeh, Emad & Fuinhas, José Alberto & Koengkan, Matheus & Shadmehri, Mohammad Taher Ahmadi, 2023. "Relationship between the share of renewable electricity consumption, economic complexity, financial development, and oil prices: A two-step club convergence and PVAR model approach," International Economics, Elsevier, vol. 173(C), pages 260-275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8674-:d:607817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.