IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6866-d576921.html
   My bibliography  Save this article

How Do Subway Signs Affect Pedestrians’ Wayfinding Behavior through Visual Short-Term Memory?

Author

Listed:
  • Haoru Li

    (School of Highway, Chang’an University, Xi’an 710064, China)

  • Jinliang Xu

    (School of Highway, Chang’an University, Xi’an 710064, China)

  • Xiaodong Zhang

    (School of Highway, Chang’an University, Xi’an 710064, China)

  • Fangchen Ma

    (School of Highway, Chang’an University, Xi’an 710064, China)

Abstract

Recently, subways have become an important part of public transportation and have developed rapidly in China. In the subway station setting, pedestrians mainly rely on visual short-term memory to obtain information on how to travel. This research aimed to explore the short-term memory capacities and the difference in short-term memory for different information for Chinese passengers regarding subway signs. Previous research has shown that people’s general short-term memory capacity is approximately four objects and that, the more complex the information, the lower people’s memory capacity. However, research on the short-term memory characteristics of pedestrians for subway signs is scarce. Hence, based on the STM theory and using 32 subway signs as stimuli, we recruited 120 subjects to conduct a cognitive test. The results showed that passengers had a different memory accuracy for different types of information in the signs. They were more accurate regarding line number and arrow, followed by location/text information, logos, and orientation. Meanwhile, information type, quantity, and complexity had significant effects on pedestrians’ short-term memory capacity. Finally, according to our results that outline the characteristics of short-term memory for subway signs, we put forward some suggestions for subway signs. The findings will be effective in helping designers and managers improve the quality of subway station services as well as promoting the development of pedestrian traffic in such a setting.

Suggested Citation

  • Haoru Li & Jinliang Xu & Xiaodong Zhang & Fangchen Ma, 2021. "How Do Subway Signs Affect Pedestrians’ Wayfinding Behavior through Visual Short-Term Memory?," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6866-:d:576921
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6866/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6866/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bin Lei & Jinliang Xu & Menghui Li & Haoru Li & Jin Li & Zhen Cao & Yarui Hao & Yuan Zhang, 2019. "Enhancing Role of Guiding Signs Setting in Metro Stations with Incorporation of Microscopic Behavior of Pedestrians," Sustainability, MDPI, vol. 11(21), pages 1-14, November.
    2. Steven J. Luck & Edward K. Vogel, 1997. "The capacity of visual working memory for features and conjunctions," Nature, Nature, vol. 390(6657), pages 279-281, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Fang & Wenli Zhang & Hua Hu & Jiayi Zhou & Dianliang Xiao & Shaojie Li, 2022. "Adaptive Aging Safety of Guidance Marks in Rail Transit Connection Systems Based on Eye Movement Data," IJERPH, MDPI, vol. 19(2), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor S. Utochkin & Vladislav A. Khvostov & Yulia M. Stakina, 2017. "Ensemble-Based Segmentation in the Perception of Multiple Feature Conjunctions," HSE Working papers WP BRP 78/PSY/2017, National Research University Higher School of Economics.
    2. Jastrzębski, Jan & Ciechanowska, Iwona & Chuderski, Adam, 2018. "The strong link between fluid intelligence and working memory cannot be explained away by strategy use," Intelligence, Elsevier, vol. 66(C), pages 44-53.
    3. Aki Kondo & Jun Saiki, 2012. "Feature-Specific Encoding Flexibility in Visual Working Memory," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
    4. Yuqi Shi & Yi Zhang & Tao Wang & Chaoyang Li & Shengqiang Yuan, 2020. "The Effects of Ambient Illumination, Color Combination, Sign Height, and Observation Angle on the Legibility of Wayfinding Signs in Metro Stations," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    5. Hongwei Tan & Sebastiaan van Dijken, 2023. "Dynamic machine vision with retinomorphic photomemristor-reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Robert W. Faff & Sebastian Kernbach, 2021. "A visualisation approach for pitching research," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(4), pages 5177-5197, December.
    7. Yuri A. Markov & Natalia A. Tiurina & Igor S. Utochkin, 2018. "Different features are stored independently in visual working memory but mediated by object-based representations," HSE Working papers WP BRP 101/PSY/2018, National Research University Higher School of Economics.
    8. Tullo, Domenico & Faubert, Jocelyn & Bertone, Armando, 2018. "The characterization of attention resource capacity and its relationship with fluid reasoning intelligence: A multiple object tracking study," Intelligence, Elsevier, vol. 69(C), pages 158-168.
    9. Jifan Zhou & Jun Yin & Tong Chen & Xiaowei Ding & Zaifeng Gao & Mowei Shen, 2011. "Visual Working Memory Capacity Does Not Modulate the Feature-Based Information Filtering in Visual Working Memory," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-10, September.
    10. Nathaniel J. S. Ashby & Stephan Dickert & Andreas Glockner, 2012. "Focusing on what you own: Biased information uptake due to ownership," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 7(3), pages 254-267, May.
    11. Lior Fink & Daniele Papismedov, 2023. "On the Same Page? What Users Benefit from a Desktop View on Mobile Devices," Information Systems Research, INFORMS, vol. 34(2), pages 423-441, June.
    12. Li, Qian & Huang, Zhuowei (Joy) & Christianson, Kiel, 2016. "Visual attention toward tourism photographs with text: An eye-tracking study," Tourism Management, Elsevier, vol. 54(C), pages 243-258.
    13. Yuri A. Markov & Igor S. Utochkin, 2017. "The Effect of Object Distinctiveness on Object-Location Binding in Visual Working Memory," HSE Working papers WP BRP 79/PSY/2017, National Research University Higher School of Economics.
    14. Carlo Baldassi & Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci & Marco Pirazzini, 2020. "A Behavioral Characterization of the Drift Diffusion Model and Its Multialternative Extension for Choice Under Time Pressure," Management Science, INFORMS, vol. 66(11), pages 5075-5093, November.
    15. S. Cerreia-Vioglio & F. Maccheroni & M. Marinacci & A. Rustichini, 2017. "Multinomial logit processes and preference discovery: inside and outside the black box," Working Papers 615, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    16. J David Timm & Frank Papenmeier, 2019. "Reorganization of spatial configurations in visual working memory: A matter of set size?," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-16, November.
    17. Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci, 2020. "Multinomial logit processes and preference discovery: outside and inside the black box," Working Papers 663, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    18. Clark, Cameron M. & Lawlor-Savage, Linette & Goghari, Vina M., 2017. "Comparing brain activations associated with working memory and fluid intelligence," Intelligence, Elsevier, vol. 63(C), pages 66-77.
    19. Ociepka, Michał & Kałamała, Patrycja & Chuderski, Adam, 2022. "High individual alpha frequency brains run fast, but it does not make them smart," Intelligence, Elsevier, vol. 92(C).
    20. repec:cup:judgdm:v:7:y:2012:i:3:p:254-267 is not listed on IDEAS
    21. Shaiyan Keshvari & Ronald van den Berg & Wei Ji Ma, 2013. "No Evidence for an Item Limit in Change Detection," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-9, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6866-:d:576921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.