IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2020i1p334-d473435.html
   My bibliography  Save this article

Evaluation of the Emission Impact of Cold-Ironing Power Systems, Using a Bi-Directional Power Flow Control Strategy

Author

Listed:
  • Carlos A. Reusser

    (School of Electrical Engineering, Pontificia Universidad Catolica de Valparaiso, Valparaíso 2340025, Chile
    These authors contributed equally to this work.)

  • Joel R. Pérez

    (Mechanical Engineering Department, University College London, London WC1E 6BT, UK
    These authors contributed equally to this work.)

Abstract

Even though cold ironing is not a new technology applied to reduce the impact of emissions from ships at berth, commonly used arrangements for shore-side power substations only allow a unidirectional power flow, from port to ship side. Although these applications have a positive contribution to port community health and global reduction of greenhouse gases (GHG), especially when the energy is supplied from renewable sources, emissions during loading/unloading operations are directly related to the operating profiles of auxiliary engines of a ship. The present work evaluates a ship’s emission impact when applying cold-ironing technology using a bi-directional power flow control strategy while at berth, thus optimizing the auxiliary engine operating profile and enabling regeneration into the port installations. The methodology applied considers the establishment of the operational profile of the ship, the adaptation and use of carbon intensity indicators (CII) used by the International Maritime Organization (IMO) to evaluate the impact of shipping, and the strategy considering the capacities of the ship to obtain and provide electric power from and to the port when at berth. Results show that the strategy can be applied to any ship with a high demand for electric power while at berth, and that the adaptation and use of different CIIs allows operational profiles of electric power generation on board to be optimized and to reduce emission generation, which affects port community health.

Suggested Citation

  • Carlos A. Reusser & Joel R. Pérez, 2020. "Evaluation of the Emission Impact of Cold-Ironing Power Systems, Using a Bi-Directional Power Flow Control Strategy," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:334-:d:473435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/334/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/334/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zis, Thalis P.V., 2019. "Prospects of cold ironing as an emissions reduction option," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 82-95.
    2. Tang, Ruoli & Wu, Zhou & Li, Xin, 2018. "Optimal operation of photovoltaic/battery/diesel/cold-ironing hybrid energy system for maritime application," Energy, Elsevier, vol. 162(C), pages 697-714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    2. Roko Glavinović & Maja Krčum & Luka Vukić & Ivan Karin, 2023. "Cold Ironing Implementation Overview in European Ports—Case Study—Croatian Ports," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    3. Wei Hou & Rita Yi Man Li & Thanawan Sittihai, 2022. "Management Optimization of Electricity System with Sustainability Enhancement," Sustainability, MDPI, vol. 14(11), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Tang, Ruoli & An, Qing & Xu, Fan & Zhang, Xiaodi & Li, Xin & Lai, Jingang & Dong, Zhengcheng, 2020. "Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method," Energy, Elsevier, vol. 211(C).
    3. Rodríguez-Gallegos, Carlos D. & Vinayagam, Lokesh & Gandhi, Oktoviano & Yagli, Gokhan Mert & Alvarez-Alvarado, Manuel S. & Srinivasan, Dipti & Reindl, Thomas & Panda, S.K., 2021. "Novel forecast-based dispatch strategy optimization for PV hybrid systems in real time," Energy, Elsevier, vol. 222(C).
    4. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    5. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    6. Lixian Fan & Bingmei Gu, 2019. "Impacts of the Increasingly Strict Sulfur Limit on Compliance Option Choices: The Case Study of Chinese SECA," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    7. Hanyu Lu & Lufei Huang, 2021. "Optimization of Shore Power Deployment in Green Ports Considering Government Subsidies," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    8. He Yin & Hai Lan & Ying-Yi Hong & Zhuangwei Wang & Peng Cheng & Dan Li & Dong Guo, 2023. "A Comprehensive Review of Shipboard Power Systems with New Energy Sources," Energies, MDPI, vol. 16(5), pages 1-44, February.
    9. Claudia Durán & Ivan Derpich & Raúl Carrasco, 2022. "Optimization of Port Layout to Determine Greenhouse Gas Emission Gaps," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    10. Monios, Jason & Ng, Adolf K.Y., 2021. "Competing institutional logics and institutional erosion in environmental governance of maritime transport," Journal of Transport Geography, Elsevier, vol. 94(C).
    11. Dai, Lei & Hu, Hao & Wang, Zhaojing, 2020. "Is Shore Side Electricity greener? An environmental analysis and policy implications," Energy Policy, Elsevier, vol. 137(C).
    12. Davide Borelli & Francesco Devia & Corrado Schenone & Federico Silenzi & Luca A. Tagliafico, 2021. "Dynamic Modelling of LNG Powered Combined Energy Systems in Port Areas," Energies, MDPI, vol. 14(12), pages 1-18, June.
    13. Tang, Ruoli & Zhang, Shihan & Zhang, Shangyu & Lai, Jingang & Zhang, Yan, 2023. "Semi-online parameter identification methodology for maritime power lithium batteries," Applied Energy, Elsevier, vol. 339(C).
    14. Eleftherios Sdoukopoulos & Maria Boile & Alkiviadis Tromaras & Nikolaos Anastasiadis, 2019. "Energy Efficiency in European Ports: State-Of-Practice and Insights on the Way Forward," Sustainability, MDPI, vol. 11(18), pages 1-25, September.
    15. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    16. Wang, Lifen & Liang, Chengji & Shi, Jian & Molavi, Anahita & Lim, Gino & Zhang, Yue, 2021. "A bilevel hybrid economic approach for optimal deployment of onshore power supply in maritime ports," Applied Energy, Elsevier, vol. 292(C).
    17. Hossam A. Gabbar & Otavio Lopes Alves Esteves, 2023. "Planning and Evaluation of Nuclear-Renewable Hybrid Energy Penetration for Marine and Waterfront Applications," Energies, MDPI, vol. 16(14), pages 1-16, July.
    18. Jon Williamsson & Nicole Costa & Vendela Santén & Sara Rogerson, 2022. "Barriers and Drivers to the Implementation of Onshore Power Supply—A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    19. Cipek, Mihael & Pavković, Danijel & Kljaić, Zdenko & Mlinarić, Tomislav Josip, 2019. "Assessment of battery-hybrid diesel-electric locomotive fuel savings and emission reduction potentials based on a realistic mountainous rail route," Energy, Elsevier, vol. 173(C), pages 1154-1171.
    20. Tang, Ruoli & Lin, Qiao & Zhou, Jinxiang & Zhang, Shangyu & Lai, Jingang & Li, Xin & Dong, Zhengcheng, 2020. "Suppression strategy of short-term and long-term environmental disturbances for maritime photovoltaic system," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:334-:d:473435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.