IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2020i1p259-d470330.html
   My bibliography  Save this article

Sustainable Second-Generation Bioethanol Production from Enzymatically Hydrolyzed Domestic Food Waste Using Pichia anomala as Biocatalyst

Author

Listed:
  • Ioanna Ntaikou

    (Institute of Chemical Engineering Sciences, Foundation for Research and Technology, 26504 Patra, Greece)

  • Georgia Antonopoulou

    (Institute of Chemical Engineering Sciences, Foundation for Research and Technology, 26504 Patra, Greece)

  • Gerasimos Lyberatos

    (Institute of Chemical Engineering Sciences, Foundation for Research and Technology, 26504 Patra, Greece
    School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece)

Abstract

In the current study, a domestic food waste containing more than 50% of carbohydrates was assessed as feedstock to produce second-generation bioethanol. Aiming to the maximum exploitation of the carbohydrate fraction of the waste, its hydrolysis via cellulolytic and amylolytic enzymatic blends was investigated and the saccharification efficiency was assessed in each case. Fermentation experiments were performed using the non-conventional yeast Pichia anomala ( Wickerhamomyces anomalus ) under both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) modes to evaluate the conversion efficiencies and ethanol yields for different enzymatic loadings. It was shown that the fermentation efficiency of the yeast was not affected by the fermentation mode and was high for all handlings, reaching 83%, whereas the enzymatic blend containing the highest amount of both cellulolytic and amylolytic enzymes led to almost complete liquefaction of the waste, resulting also in ethanol yields reaching 141.06 ± 6.81 g ethanol/kg waste (0.40 ± 0.03 g ethanol/g consumed carbohydrates). In the sequel, a scale-up fermentation experiment was performed with the highest loading of enzymes in SHF mode, from which the maximum specific growth rate, μ max , and the biomass yield, Y x/s , of the yeast from the hydrolyzed waste were estimated. The ethanol yields that were achieved were similar to those of the respective small scale experiments reaching 138.67 ± 5.69 g ethanol/kg waste (0.40 ± 0.01 g ethanol/g consumed carbohydrates).

Suggested Citation

  • Ioanna Ntaikou & Georgia Antonopoulou & Gerasimos Lyberatos, 2020. "Sustainable Second-Generation Bioethanol Production from Enzymatically Hydrolyzed Domestic Food Waste Using Pichia anomala as Biocatalyst," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:259-:d:470330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/259/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/259/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. George Dimitrellos & Gerasimos Lyberatos & Georgia Antonopoulou, 2020. "Does Acid Addition Improve Liquid Hot Water Pretreatment of Lignocellulosic Biomass towards Biohydrogen and Biogas Production?," Sustainability, MDPI, vol. 12(21), pages 1-14, October.
    2. Maria Alexandropoulou & Georgia Antonopoulou & Ioanna Ntaikou & Gerasimos Lyberatos, 2017. "Fungal Pretreatment of Willow Sawdust with Abortiporus biennis for Anaerobic Digestion: Impact of an External Nitrogen Source," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    3. Y.H. Teoh & K.H. Yu & H.G. How & H.-T. Nguyen, 2019. "Experimental Investigation of Performance, Emission and Combustion Characteristics of a Common-Rail Diesel Engine Fuelled with Bioethanol as a Fuel Additive in Coconut Oil Biodiesel Blends," Energies, MDPI, vol. 12(10), pages 1-17, May.
    4. Ntaikou, I. & Antonopoulou, G. & Vayenas, D. & Lyberatos, G., 2020. "Assessment of electrocoagulation as a pretreatment method of olive mill wastewater towards alternative processes for biofuels production," Renewable Energy, Elsevier, vol. 154(C), pages 1252-1262.
    5. Leonidas Matsakas & Paul Christakopoulos, 2015. "Ethanol Production from Enzymatically Treated Dried Food Waste Using Enzymes Produced On-Site," Sustainability, MDPI, vol. 7(2), pages 1-13, January.
    6. Ben Atitallah, Imen & Ntaikou, Ioanna & Antonopoulou, Georgia & Alexandropoulou, Maria & Brysch-Herzberg, Michael & Nasri, Moncef & Lyberatos, Gerasimos & Mechichi, Tahar, 2020. "Evaluation of the non-conventional yeast strain Wickerhamomyces anomalus (Pichia anomala) X19 for enhanced bioethanol production using date palm sap as renewable feedstock," Renewable Energy, Elsevier, vol. 154(C), pages 71-81.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Musaab O. El-Faroug & Fuwu Yan & Maji Luo & Richard Fiifi Turkson, 2016. "Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline," Energies, MDPI, vol. 9(12), pages 1-24, November.
    2. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    3. Ntaikou, I. & Alexandropoulou, M. & Kamilari, M. & Alamri, S.A. & Moustafa, Y.S. & Hashem, M. & Antonopoulou, G. & Lyberatos, G., 2023. "Saccharification of starchy food waste through thermochemical and enzymatic pretreatment, towards enhanced bioethanol production via newly isolated non-conventional yeast strains," Energy, Elsevier, vol. 281(C).
    4. Noraziah Abu Yazid & Raquel Barrena & Dimitrios Komilis & Antoni Sánchez, 2017. "Solid-State Fermentation as a Novel Paradigm for Organic Waste Valorization: A Review," Sustainability, MDPI, vol. 9(2), pages 1-28, February.
    5. Sujeet Kesharvani & Gaurav Dwivedi & Tikendra Nath Verma & Puneet Verma, 2022. "The Experimental Investigation of a Diesel Engine Using Ternary Blends of Algae Biodiesel, Ethanol and Diesel Fuels," Energies, MDPI, vol. 16(1), pages 1-18, December.
    6. Liana Vanyan & Adam Cenian & Karen Trchounian, 2022. "Biogas and Biohydrogen Production Using Spent Coffee Grounds and Alcohol Production Waste," Energies, MDPI, vol. 15(16), pages 1-11, August.
    7. Suhartini, Sri & Rohma, Novita Ainur & Elviliana, & Hidayat, Nur & Sunyoto, Nimas Mayang S. & Mardawati, Efri & Kasbawati, & Mascruhin, Nanang & Idrus, Syazwani & Fitria, & Jung, Young Hoon & Melville, 2023. "Comparison of acid and alkaline pre-treatment on methane production from empty palm oil fruit bunches (OPEFB): Effect on characteristics, digester performance, and correlation of kinetic parameters," Renewable Energy, Elsevier, vol. 215(C).
    8. Aikaterini Konti & Dimitris Kekos & Diomi Mamma, 2020. "Life Cycle Analysis of the Bioethanol Production from Food Waste—A Review," Energies, MDPI, vol. 13(19), pages 1-14, October.
    9. Ankita Das & Sandeep Das & Nandita Das & Prisha Pandey & Birson Ingti & Vladimir Panchenko & Vadim Bolshev & Andrey Kovalev & Piyush Pandey, 2023. "Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials," Agriculture, MDPI, vol. 13(9), pages 1-34, August.
    10. George Dimitrellos & Gerasimos Lyberatos & Georgia Antonopoulou, 2020. "Does Acid Addition Improve Liquid Hot Water Pretreatment of Lignocellulosic Biomass towards Biohydrogen and Biogas Production?," Sustainability, MDPI, vol. 12(21), pages 1-14, October.
    11. Shengming Zhang & Tiehan Mei & Chonghao Zhu & Huimin Shang & Shushan Gao & Liyuan Qin & Haitao Chen, 2022. "A Combination Method of Liquid Hot Water and Phosphotungstic Acid Pretreatment for Improving the Enzymatic Saccharification Efficiency of Rice Straw," Energies, MDPI, vol. 15(10), pages 1-13, May.
    12. Mohamad G. Abiad & Lokman I. Meho, 2018. "Food loss and food waste research in the Arab world: a systematic review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(2), pages 311-322, April.
    13. Antonopoulou, G. & Bampos, G. & Ntaikou, I. & Alexandropoulou, M. & Dailianis, S. & Bebelis, S. & Lyberatos, G., 2023. "The biochemical and electrochemical characteristics of a microbial fuel cell used to produce electricity from olive mill wastewater," Energy, Elsevier, vol. 282(C).
    14. Helen Onyeaka & Rachel Fran Mansa & Clemente Michael Vui Ling Wong & Taghi Miri, 2022. "Bioconversion of Starch Base Food Waste into Bioethanol," Sustainability, MDPI, vol. 14(18), pages 1-11, September.
    15. Bibra, Mohit & Rathinam, Navanietha K. & Johnson, Glenn R. & Sani, Rajesh K., 2020. "Single pot biovalorization of food waste to ethanol by Geobacillus and Thermoanaerobacter spp," Renewable Energy, Elsevier, vol. 155(C), pages 1032-1041.
    16. Johannes Full & Steffen Merseburg & Robert Miehe & Alexander Sauer, 2021. "A New Perspective for Climate Change Mitigation—Introducing Carbon-Negative Hydrogen Production from Biomass with Carbon Capture and Storage (HyBECCS)," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    17. Leonidas Matsakas & Christos Nitsos & Dimitrij Vörös & Ulrika Rova & Paul Christakopoulos, 2017. "High-Titer Methane from Organosolv-Pretreated Spruce and Birch," Energies, MDPI, vol. 10(3), pages 1-15, February.
    18. Rakhmania & Hesam Kamyab & Muhammad Ali Yuzir & Norhayati Abdullah & Le Minh Quan & Fatimah Azizah Riyadi & Riadh Marzouki, 2022. "Recent Applications of the Electrocoagulation Process on Agro-Based Industrial Wastewater: A Review," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    19. Qiao Wang & Huan Li & Kai Feng & Jianguo Liu, 2020. "Oriented Fermentation of Food Waste towards High-Value Products: A Review," Energies, MDPI, vol. 13(21), pages 1-29, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:259-:d:470330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.