IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3636-d816670.html
   My bibliography  Save this article

A Combination Method of Liquid Hot Water and Phosphotungstic Acid Pretreatment for Improving the Enzymatic Saccharification Efficiency of Rice Straw

Author

Listed:
  • Shengming Zhang

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China
    Agricultural Engineering Postdoctoral Research Station, Northeast Agricultural University, Harbin 150030, China)

  • Tiehan Mei

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Pig-Breeding Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China)

  • Chonghao Zhu

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Huimin Shang

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Shushan Gao

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Pig-Breeding Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China)

  • Liyuan Qin

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Haitao Chen

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China
    Heilongjiang Province Technology Innovation Center of Mechanization and Materialization of Major Crops Production, Harbin 150030, China)

Abstract

Chemical pretreatment can significantly improve the enzymatic hydrolysis efficiency of lignocellulosic biomass, thereby improving the yield of sugar materials for the production of cellulosic ethanol, but commonly used acid–base catalysts are difficult to recover and reuse. In this work, a combination method of liquid hot water (LHW) and phosphotungstic acid (PTA) pretreatment was performed to improve the saccharification efficiency of rice straw, and we attempted to evaluate the reuse effect of PTA catalysts. The rice straw was first treated with LHW at 180 °C for 90 min, and then treated with 20 mM PTA at 130 °C for 60 min. After pretreatment, the cellulose hydrolysis efficiency and glucose recovery of the rice straw increased by 201.85% and 164.25%, respectively. Glucose accounted for 96.8% of the total reducing sugar in the final enzymatic hydrolysate. After each PTA pretreatment, approximately 70.8–73.2% of the PTA catalyst could be recycled. Moreover, the catalytic activity of the PTA catalyst that had been used five times did not decrease. The improved enzymatic saccharification efficiency was attributed to the removal of 89.24% hemicellulose and 21.33% lignin from the lignocellulosic substrate. The two-step LHW-PTA pretreatment could pretreat biomass in the field of cellulosic ethanol production.

Suggested Citation

  • Shengming Zhang & Tiehan Mei & Chonghao Zhu & Huimin Shang & Shushan Gao & Liyuan Qin & Haitao Chen, 2022. "A Combination Method of Liquid Hot Water and Phosphotungstic Acid Pretreatment for Improving the Enzymatic Saccharification Efficiency of Rice Straw," Energies, MDPI, vol. 15(10), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3636-:d:816670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3636/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3636/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. George Dimitrellos & Gerasimos Lyberatos & Georgia Antonopoulou, 2020. "Does Acid Addition Improve Liquid Hot Water Pretreatment of Lignocellulosic Biomass towards Biohydrogen and Biogas Production?," Sustainability, MDPI, vol. 12(21), pages 1-14, October.
    2. Tsegaye, Bahiru & Balomajumder, Chandrajit & Roy, Partha, 2020. "Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production," Renewable Energy, Elsevier, vol. 148(C), pages 923-934.
    3. Pandiyan, K. & Singh, Arjun & Singh, Surender & Saxena, Anil Kumar & Nain, Lata, 2019. "Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production," Renewable Energy, Elsevier, vol. 132(C), pages 723-741.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaorui Yang & Xiaotong Li & Liyan Zhu & Jinhua Liang & Jianliang Zhu, 2023. "Production of Hemicellulose Sugars Combined with the Alkaline Extraction Lignin Increased the Hydro-Depolymerization of Cellulose from Corn Cob," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    2. Lee, Ziyoung & Park, Sungwook, 2020. "Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 149(C), pages 80-90.
    3. Ramesh, Arumugam & Tamizhdurai, Perumal & Shanthi, Kannan, 2019. "Catalytic hydrodeoxygenation of jojoba oil to the green-fuel application on Ni-MoS/Mesoporous zirconia-silica catalysts," Renewable Energy, Elsevier, vol. 138(C), pages 161-173.
    4. Aghili Mehrizi, Amirreza & Tangestaninejad, Shahram & Denayer, Joeri F.M. & Karimi, Keikhosro & Shafiei, Marzieh, 2023. "The critical impacts of anion and cosolvent on morpholinium ionic liquid pretreatment for efficient renewable energy production from triticale straw," Renewable Energy, Elsevier, vol. 202(C), pages 686-698.
    5. Li, Xinzhe & Dong, Yufeng & Chang, Lu & Chen, Lifan & Wang, Guan & Zhuang, Yingping & Yan, Xuefeng, 2023. "Dynamic hybrid modeling of fuel ethanol fermentation process by integrating biomass concentration XGBoost model and kinetic parameter artificial neural network model into mechanism model," Renewable Energy, Elsevier, vol. 205(C), pages 574-582.
    6. Burov, Nikita O. & Savelenko, Vsevolod D. & Ershov, Mikhail A. & Vikhritskaya, Anastasia O. & Tikhomirova, Ekaterina O. & Klimov, Nikita A. & Kapustin, Vladimir M. & Chernysheva, Elena A. & Sereda, Al, 2023. "Knowledge contribution from science to technology in the conceptualization model to produce sustainable aviation fuels from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 215(C).
    7. Ben Atitallah, Imen & Ntaikou, Ioanna & Antonopoulou, Georgia & Alexandropoulou, Maria & Brysch-Herzberg, Michael & Nasri, Moncef & Lyberatos, Gerasimos & Mechichi, Tahar, 2020. "Evaluation of the non-conventional yeast strain Wickerhamomyces anomalus (Pichia anomala) X19 for enhanced bioethanol production using date palm sap as renewable feedstock," Renewable Energy, Elsevier, vol. 154(C), pages 71-81.
    8. Mohamad Aziz, Nur Atiqah & Mohamed, Hassan & Kania, Dina & Ong, Hwai Chyuan & Zainal, Bidattul Syirat & Junoh, Hazlina & Ker, Pin Jern & Silitonga, A.S., 2024. "Bioenergy production by integrated microwave-assisted torrefaction and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    9. Liana Vanyan & Adam Cenian & Karen Trchounian, 2022. "Biogas and Biohydrogen Production Using Spent Coffee Grounds and Alcohol Production Waste," Energies, MDPI, vol. 15(16), pages 1-11, August.
    10. Suhartini, Sri & Rohma, Novita Ainur & Elviliana, & Hidayat, Nur & Sunyoto, Nimas Mayang S. & Mardawati, Efri & Kasbawati, & Mascruhin, Nanang & Idrus, Syazwani & Fitria, & Jung, Young Hoon & Melville, 2023. "Comparison of acid and alkaline pre-treatment on methane production from empty palm oil fruit bunches (OPEFB): Effect on characteristics, digester performance, and correlation of kinetic parameters," Renewable Energy, Elsevier, vol. 215(C).
    11. Patience Afi Seglah & Yajing Wang & Hongyan Wang & Chunyu Gao & Yuyun Bi, 2022. "Sustainable Biofuel Production from Animal Manure and Crop Residues in Ghana," Energies, MDPI, vol. 15(16), pages 1-17, August.
    12. Ioanna Ntaikou & Georgia Antonopoulou & Gerasimos Lyberatos, 2020. "Sustainable Second-Generation Bioethanol Production from Enzymatically Hydrolyzed Domestic Food Waste Using Pichia anomala as Biocatalyst," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
    13. Nishu, & Li, Chong & Yellezuome, Dominic & Li, Yingkai & Liu, Ronghou, 2023. "Catalytic pyrolysis of rice straw for high yield of aromatics over modified ZSM-5 catalysts and its kinetics," Renewable Energy, Elsevier, vol. 209(C), pages 569-580.
    14. Nishu, & Li, Chong & Chai, Meiyun & Rahman, Md. Maksudur & Li, Yingkai & Sarker, Manobendro & Liu, Ronghou, 2021. "Performance of alkali and Ni-modified ZSM-5 during catalytic pyrolysis of extracted hemicellulose from rice straw for the production of aromatic hydrocarbons," Renewable Energy, Elsevier, vol. 175(C), pages 936-951.
    15. Chen, Wei-Hsin & Li, Shu-Cheng & Lim, Steven & Chen, Zih-Yu & Juan, Joon Ching, 2021. "Reaction and hydrogen production phenomena of ethanol steam reforming in a catalytic membrane reactor," Energy, Elsevier, vol. 220(C).
    16. Raj, Kanak & Krishnan, Chandraraj, 2020. "Improved co-production of ethanol and xylitol from low-temperature aqueous ammonia pretreated sugarcane bagasse using two-stage high solids enzymatic hydrolysis and Candida tropicalis," Renewable Energy, Elsevier, vol. 153(C), pages 392-403.
    17. Johannes Full & Steffen Merseburg & Robert Miehe & Alexander Sauer, 2021. "A New Perspective for Climate Change Mitigation—Introducing Carbon-Negative Hydrogen Production from Biomass with Carbon Capture and Storage (HyBECCS)," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    18. Matei, Jéssica C. & Soares, Marlene & Bonato, Aline Cristine H. & de Freitas, Maria Paula A. & Helm, Cristiane V. & Maroldi, Wédisley V. & Magalhães, Washington L.E. & Haminiuk, Charles W.I. & Maciel,, 2020. "Enzymatic delignification of sugar cane bagasse and rice husks and its effect in saccharification," Renewable Energy, Elsevier, vol. 157(C), pages 987-997.
    19. Jang, Soo-Kyeong & Choi, June-Ho & Kim, Jong-Hwa & Kim, Hoyong & Jeong, Hanseob & Choi, In-Gyu, 2020. "Statistical analysis of glucose production from Eucalyptus pellita with individual control of chemical constituents," Renewable Energy, Elsevier, vol. 148(C), pages 298-308.
    20. Franziska Eller & Xiao Guo & Siyuan Ye & Thomas J. Mozdzer & Hans Brix, 2020. "Suitability of Wild Phragmites australis as Bio-Resource: Tissue Quality and Morphology of Populations from Three Continents," Resources, MDPI, vol. 9(12), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3636-:d:816670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.