IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v75y2023ics0160791x23001574.html
   My bibliography  Save this article

Techno-economic assessment and optimal design of hybrid power generation-based renewable energy systems

Author

Listed:
  • Al-Shetwi, Ali Q.
  • Atawi, Ibrahem E.
  • Abuelrub, Ahmad
  • Hannan, M.A.

Abstract

This study presents a techno-economic analysis of five different hybrid energy systems (HES)-based renewable energy sources (RES) in the northern region of Saudi Arabia. It aims to provide valuable insights into the economic feasibility, technical compatibility, and environmental implications of these systems. To carry out this analysis, hybrid optimization of multiple energy resources (HOMER) software is used. Parameters such as total net price cost (TNPC), cost of energy (COE), initial capital cost (ICC), energy generation and consumption, excess and unmet energy, renewable energy (RE) fraction, and emissions were considered to assess the different HES configurations. The findings demonstrate that the grid-connected photovoltaic/wind turbines (PV/WT) system is the best option in terms of economic perspective with TNPC and COE of $213,099 and $0.0480/kWh, respectively followed by grid-connected PV/fuel cell (FC)/WT and stand-alone PV/diesel generator (DG)/WT/battery systems. The PV/battery and PV/FC/WT/battery green hybridization are the highest cost-effective due to their high initial and replacement battery costs. The grid-connected PV/WT and PV/DG/WT/battery systems are the most efficient in meeting load demand, while the PV/battery and PV/FC/WT/battery hybridization have the highest excess and unmet energy. From an environmental perspective, the stand-alone HES consisting solely of RESs, i.e., PV and batteries, has the lowest emissions, making it one of the most environmentally friendly options. Following closely is the PV/FC/WT/battery configuration, which also demonstrates low emissions. On the other hand, the grid-connected PV/WT system exhibits the highest total GHG emissions, rendering it the least environmentally friendly option. This research provides decision-makers, researchers, and stakeholders with valuable information for selecting the optimal hybrid energy systems, taking into account economic, technical, and environmental considerations.

Suggested Citation

  • Al-Shetwi, Ali Q. & Atawi, Ibrahem E. & Abuelrub, Ahmad & Hannan, M.A., 2023. "Techno-economic assessment and optimal design of hybrid power generation-based renewable energy systems," Technology in Society, Elsevier, vol. 75(C).
  • Handle: RePEc:eee:teinso:v:75:y:2023:i:c:s0160791x23001574
    DOI: 10.1016/j.techsoc.2023.102352
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X23001574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2023.102352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saheed Lekan Gbadamosi & Fejiro S. Ogunje & Samuel Tita Wara & Nnamdi I. Nwulu, 2022. "Techno-Economic Evaluation of a Hybrid Energy System for an Educational Institution: A Case Study," Energies, MDPI, vol. 15(15), pages 1-12, August.
    2. Khan, Khalid & Su, Chi Wei & Rehman, Ashfaq U. & Ullah, Rahman, 2022. "Is technological innovation a driver of renewable energy?," Technology in Society, Elsevier, vol. 70(C).
    3. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    4. Huang, Yongming & Haseeb, Mohammad & Usman, Muhammad & Ozturk, Ilhan, 2022. "Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries?," Technology in Society, Elsevier, vol. 68(C).
    5. Gualtieri, Giovanni & Secci, Sauro, 2014. "Extrapolating wind speed time series vs. Weibull distribution to assess wind resource to the turbine hub height: A case study on coastal location in Southern Italy," Renewable Energy, Elsevier, vol. 62(C), pages 164-176.
    6. Wang, Wei & Xiao, Weiwei & Bai, Caiquan, 2022. "Can renewable energy technology innovation alleviate energy poverty? Perspective from the marketization level," Technology in Society, Elsevier, vol. 68(C).
    7. Schaube, P. & Ise, A. & Clementi, L., 2022. "Distributed photovoltaic generation in Argentina: An analysis based on the technical innovation system framework," Technology in Society, Elsevier, vol. 68(C).
    8. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
    9. Peláez-Peláez, Sofía & Colmenar-Santos, Antonio & Pérez-Molina, Clara & Rosales, Ana-Esther & Rosales-Asensio, Enrique, 2021. "Techno-economic analysis of a heat and power combination system based on hybrid photovoltaic-fuel cell systems using hydrogen as an energy vector," Energy, Elsevier, vol. 224(C).
    10. Li, Chong & Liu, Youying & Li, Gang & Li, Jianyan & Zhu, Dasheng & Jia, Wenhua & Li, Guo & Zhi, Youran & Zhai, Xinyu, 2016. "Evaluation of wind energy resource and wind turbine characteristics at two locations in China," Technology in Society, Elsevier, vol. 47(C), pages 121-128.
    11. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    12. Li, Songran & Shao, Qinglong, 2021. "Exploring the determinants of renewable energy innovation considering the institutional factors: A negative binomial analysis," Technology in Society, Elsevier, vol. 67(C).
    13. Isa, Normazlina Mat & Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2016. "A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital," Energy, Elsevier, vol. 112(C), pages 75-90.
    14. Fahad Alharbi & Denes Csala, 2020. "Saudi Arabia’s Solar and Wind Energy Penetration: Future Performance and Requirements," Energies, MDPI, vol. 13(3), pages 1-18, January.
    15. Usman, Ahmed & Ozturk, Ilhan & Ullah, Sana & Hassan, Ali, 2021. "Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies," Technology in Society, Elsevier, vol. 67(C).
    16. Puertas, Rosa & Guaita-Martinez, José M. & Carracedo, Patricia & Ribeiro-Soriano, Domingo, 2022. "Analysis of European environmental policies: Improving decision making through eco-efficiency," Technology in Society, Elsevier, vol. 70(C).
    17. Li, Jinze & Liu, Pei & Li, Zheng, 2020. "Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China," Energy, Elsevier, vol. 208(C).
    18. Al-Sharafi, Abdullah & Sahin, Ahmet Z. & Ayar, Tahir & Yilbas, Bekir S., 2017. "Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 33-49.
    19. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    20. Nuru, Jude T. & Rhoades, Jason L. & Gruber, James S., 2021. "The socio-technical barriers and strategies for overcoming the barriers to deploying solar mini-grids in rural islands: Evidence from Ghana," Technology in Society, Elsevier, vol. 65(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    2. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
    3. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    4. Pal, Pikaso & Mukherjee, V., 2021. "Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: An investigation based on techno-economic feasibility assessment for the application of end-user load demand in N," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    7. El-Sattar, Hoda Abd & Kamel, Salah & Hassan, Mohamed H. & Jurado, Francisco, 2022. "An effective optimization strategy for design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 260(C).
    8. Asif Khan & Wu Ximei, 2022. "Digital Economy and Environmental Sustainability: Do Information Communication and Technology (ICT) and Economic Complexity Matter?," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    9. Abdullah Al Abri & Abdullah Al Kaaf & Musaab Allouyahi & Ali Al Wahaibi & Razzaqul Ahshan & Rashid S. Al Abri & Ahmed Al Abri, 2022. "Techno-Economic and Environmental Analysis of Renewable Mix Hybrid Energy System for Sustainable Electrification of Al-Dhafrat Rural Area in Oman," Energies, MDPI, vol. 16(1), pages 1-23, December.
    10. Saif Mubaarak & Delong Zhang & Jinxin Liu & Yongcong Chen & Longze Wang & Sayed A. Zaki & Rongfang Yuan & Jing Wu & Yan Zhang & Meicheng Li, 2020. "Potential Techno-Economic Feasibility of Hybrid Energy Systems for Electrifying Various Consumers in Yemen," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    11. Mounir Alliche & Redha Rebhi & Noureddine Kaid & Younes Menni & Houari Ameur & Mustafa Inc & Hijaz Ahmad & Giulio Lorenzini & Ayman A. Aly & Sayed K. Elagan & Bassem F. Felemban, 2021. "Estimation of the Wind Energy Potential in Various North Algerian Regions," Energies, MDPI, vol. 14(22), pages 1-13, November.
    12. Fazlur Rashid & Md. Emdadul Hoque & Muhammad Aziz & Talukdar Nazmus Sakib & Md. Tariqul Islam & Raihan Moker Robin, 2021. "Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh," Energies, MDPI, vol. 14(18), pages 1-24, September.
    13. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    14. Estefania Artigao & Antonio Vigueras-Rodríguez & Andrés Honrubia-Escribano & Sergio Martín-Martínez & Emilio Gómez-Lázaro, 2021. "Wind Resource and Wind Power Generation Assessment for Education in Engineering," Sustainability, MDPI, vol. 13(5), pages 1-27, February.
    15. Jurasz, Jakub & Guezgouz, Mohammed & Campana, Pietro E. & Kies, Alexander, 2022. "On the impact of load profile data on the optimization results of off-grid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    17. Jahangir, Mohammad Hossein & Montazeri, Mohammad & Mousavi, Seyed Ali & Kargarzadeh, Arash, 2022. "Reducing carbon emissions of industrial large livestock farms using hybrid renewable energy systems," Renewable Energy, Elsevier, vol. 189(C), pages 52-65.
    18. Pang, Yi & Pan, Lei & Zhang, Jingmei & Chen, Jianwei & Dong, Yan & Sun, Hexu, 2022. "Integrated sizing and scheduling of an off-grid integrated energy system for an isolated renewable energy hydrogen refueling station," Applied Energy, Elsevier, vol. 323(C).
    19. J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    20. Pereira, Géssica Michelle dos Santos & Weigert, Gabriela Rosalee & Macedo, Pablo Lopes & Silva, Kiane Alves e & Segura Salas, Cresencio Silvio & Gonçalves, Antônio Maurício de Matos & Nascimento, Hebe, 2022. "Quasi-dynamic operation and maintenance plan for photovoltaic systems in remote areas: The framework of Pantanal-MS," Renewable Energy, Elsevier, vol. 181(C), pages 404-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:75:y:2023:i:c:s0160791x23001574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.