IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3329-d261961.html
   My bibliography  Save this article

Qatar’s Wind Energy Potential with Associated Financial and Environmental Benefits for the Natural Gas Industry

Author

Listed:
  • Carlos Méndez

    (Division of Sustainable Development (DSD), College of Science and Engineering (CSE), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation (QF), Doha 5825, Qatar)

  • Yusuf Bicer

    (Division of Sustainable Development (DSD), College of Science and Engineering (CSE), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation (QF), Doha 5825, Qatar)

Abstract

This study analyzes the possibility to use the wind’s kinetic energy to produce electricity in Northern Qatar for the natural gas processing industry. An evaluation of the wind potentiality is performed based on a thorough analysis of parameters such as wind speed and direction, temperature, atmospheric pressure, and air density. In addition, based on the measured parameters, a commercial wind turbine is selected, and a case study is presented in order to quantify the energy that a wind farm could produce and its environmental benefits. Furthermore, an economical assessment is made to quantify the repercussions that it could produce if this wind farm substitutes a fraction of the energy demand (within the oil and gas field) that is currently generated by traditional hydrocarbons. The results indicate that the environmental parameters, led by a 5.06 m/s wind speed mean, allow the production of wind energy in the area with an annual CO 2 savings of 6.813 tons in a 17 MW wind power plant. This enables Qatar to reduce its internal oil and gas consumption. As a result, the amount of hydrocarbon (natural gas) saved could be used for exportation purposes, generating a positive outcome for the economy with a cost savings of about 3.32 million US$ per year through such a small size wind power plant. From the energy production point of view, the natural parameters enable a single wind turbine to produce an average of 6995.26 MWh of electricity. Furthermore, the wind farm utilized in the case study is capable of generating an average of 34.976 MWh in a year.

Suggested Citation

  • Carlos Méndez & Yusuf Bicer, 2019. "Qatar’s Wind Energy Potential with Associated Financial and Environmental Benefits for the Natural Gas Industry," Energies, MDPI, vol. 12(17), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3329-:d:261961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3329/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Florin Onea & Eugen Rusu, 2019. "An Assessment of Wind Energy Potential in the Caspian Sea," Energies, MDPI, vol. 12(13), pages 1-18, July.
    2. Mohammed Redha Qader, 2009. "Electricity Consumption and GHG Emissions in GCC Countries," Energies, MDPI, vol. 2(4), pages 1-13, December.
    3. Marafia, A-Hamid & Ashour, Hamdy A., 2003. "Economics of off-shore/on-shore wind energy systems in Qatar," Renewable Energy, Elsevier, vol. 28(12), pages 1953-1963.
    4. Birgir Freyr Ragnarsson & Gudmundur V. Oddsson & Runar Unnthorsson & Birgir Hrafnkelsson, 2015. "Levelized Cost of Energy Analysis of a Wind Power Generation System at Búrfell in Iceland," Energies, MDPI, vol. 8(9), pages 1-22, September.
    5. Ali Marjan & Mahmood Shafiee, 2018. "Evaluation of Wind Resources and the Effect of Market Price Components on Wind-Farm Income: A Case Study of Ørland in Norway," Energies, MDPI, vol. 11(11), pages 1-21, October.
    6. Quetzalcoatl Hernandez-Escobedo & Javier Garrido & Fernando Rueda-Martinez & Gerardo Alcalá & Alberto-Jesus Perea-Moreno, 2019. "Wind Power Cogeneration to Reduce Peak Electricity Demand in Mexican States Along the Gulf of Mexico," Energies, MDPI, vol. 12(12), pages 1-22, June.
    7. Atalay, Yasemin & Biermann, Frank & Kalfagianni, Agni, 2016. "Adoption of renewable energy technologies in oil-rich countries: Explaining policy variation in the Gulf Cooperation Council states," Renewable Energy, Elsevier, vol. 85(C), pages 206-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saif Mubaarak & Delong Zhang & Jinxin Liu & Yongcong Chen & Longze Wang & Sayed A. Zaki & Rongfang Yuan & Jing Wu & Yan Zhang & Meicheng Li, 2020. "Potential Techno-Economic Feasibility of Hybrid Energy Systems for Electrifying Various Consumers in Yemen," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    2. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.
    3. Valliyil Mohammed Aboobacker & Puthuveetil Razak Shanas & Subramanian Veerasingam & Ebrahim M. A. S. Al-Ansari & Fadhil N. Sadooni & Ponnumony Vethamony, 2021. "Long-Term Assessment of Onshore and Offshore Wind Energy Potentials of Qatar," Energies, MDPI, vol. 14(4), pages 1-21, February.
    4. Okonkwo, Eric C. & Wole-Osho, Ifeoluwa & Bamisile, Olusola & Abid, Muhammad & Al-Ansari, Tareq, 2021. "Grid integration of renewable energy in Qatar: Potentials and limitations," Energy, Elsevier, vol. 235(C).
    5. Ahmed K. Nassar, 2022. "Identifying and Explaining Public Preferences for Renewable Energy Sources in Qatar," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    6. Jesús Rascón & Wildor Gosgot Angeles & Manuel Oliva-Cruz & Miguel Ángel Barrena Gurbillón, 2022. "Wind Characteristics and Wind Energy Potential in Andean Towns in Northern Peru between 2016 and 2020: A Case Study of the City of Chachapoyas," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
    7. Abdulla Al Wahedi & Yusuf Bicer, 2020. "A Case Study in Qatar for Optimal Energy Management of an Autonomous Electric Vehicle Fast Charging Station with Multiple Renewable Energy and Storage Systems," Energies, MDPI, vol. 13(19), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Maamary, Hilal M.S. & Kazem, Hussein A. & Chaichan, Miqdam T., 2017. "Climate change: The game changer in the Gulf Cooperation Council Region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 555-576.
    2. Zhongdong Yu & Wei Liu & Liming Chen & Serkan Eti & Hasan Dinçer & Serhat Yüksel, 2019. "The Effects of Electricity Production on Industrial Development and Sustainable Economic Growth: A VAR Analysis for BRICS Countries," Sustainability, MDPI, vol. 11(21), pages 1-13, October.
    3. Ahmed Saddam, 2015. "Variance Decomposition of Emissions, FDI, Growth and Imports in GCC countries: A Macroeconomic Analysis," International Journal of Management Science and Business Administration, Inovatus Services Ltd., vol. 1(6), pages 118-126, May.
    4. Dyah Maya Nihayah & Evi Gravitiani & Siti Aisyah Tri Rahayu, 2021. "Does the Clean Development Mechanism Exist in Developing Countries After an International Agreement?," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 409-417.
    5. Mohandes, M. & Rehman, S. & Rahman, S.M., 2011. "Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)," Applied Energy, Elsevier, vol. 88(11), pages 4024-4032.
    6. Teklebrhan Negash & Erik Möllerström & Fredric Ottermo, 2020. "An Assessment of Wind Energy Potential for the Three Topographic Regions of Eritrea," Energies, MDPI, vol. 13(7), pages 1-12, April.
    7. Mostafaeipour, Ali, 2010. "Feasibility study of offshore wind turbine installation in Iran compared with the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1722-1743, September.
    8. Tatiana Nevzorova, 2020. "Biogas Production in the Russian Federation: Current Status, Potential, and Barriers," Energies, MDPI, vol. 13(14), pages 1-21, July.
    9. Alberto-Jesus Perea-Moreno & Francisco Manzano-Agugliaro, 2020. "Energy Saving at Cities," Energies, MDPI, vol. 13(15), pages 1-3, July.
    10. Lashin, Aref & Shata, Ahmed, 2012. "An analysis of wind power potential in Port Said, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6660-6667.
    11. Treyer, Karin & Bauer, Christian, 2016. "The environmental footprint of UAE׳s electricity sector: Combining life cycle assessment and scenario modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1234-1247.
    12. Doukas, Haris & Patlitzianas, Konstantinos D. & Kagiannas, Argyris G. & Psarras, John, 2006. "Renewable energy sources and rationale use of energy development in the countries of GCC: Myth or reality?," Renewable Energy, Elsevier, vol. 31(6), pages 755-770.
    13. AlFarra, Hasan Jamil & Abu-Hijleh, Bassam, 2012. "The potential role of nuclear energy in mitigating CO2 emissions in the United Arab Emirates," Energy Policy, Elsevier, vol. 42(C), pages 272-285.
    14. Birgir Hrafnkelsson & Gudmundur V. Oddsson & Runar Unnthorsson, 2016. "A Method for Estimating Annual Energy Production Using Monte Carlo Wind Speed Simulation," Energies, MDPI, vol. 9(4), pages 1-14, April.
    15. Yongbum Kwon & Hyeji Lee & Heekwan Lee, 2018. "Implication of the cluster analysis using greenhouse gas emissions of Asian countries to climate change mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1225-1249, December.
    16. Valliyil Mohammed Aboobacker & Puthuveetil Razak Shanas & Subramanian Veerasingam & Ebrahim M. A. S. Al-Ansari & Fadhil N. Sadooni & Ponnumony Vethamony, 2021. "Long-Term Assessment of Onshore and Offshore Wind Energy Potentials of Qatar," Energies, MDPI, vol. 14(4), pages 1-21, February.
    17. Alsadi, Hanan, 2020. "Potential Influences on the Prospect of Renewable Energy Development in OPEC Members," OSF Preprints mhca2, Center for Open Science.
    18. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H. & Ahmad-Yazid, A., 2012. "A review on electricity generation based on biomass residue in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5879-5889.
    19. Haider Mahmood & Abdullatif Sulaiman Alrasheed & Maham Furqan, 2018. "Financial Market Development and Pollution Nexus in Saudi Arabia: Asymmetrical Analysis," Energies, MDPI, vol. 11(12), pages 1-15, December.
    20. Mohamed H. Elnabawi, 2021. "Evaluating the Impact of Energy Efficiency Building Codes for Residential Buildings in the GCC," Energies, MDPI, vol. 14(23), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3329-:d:261961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.