IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3329-d261961.html
   My bibliography  Save this article

Qatar’s Wind Energy Potential with Associated Financial and Environmental Benefits for the Natural Gas Industry

Author

Listed:
  • Carlos Méndez

    (Division of Sustainable Development (DSD), College of Science and Engineering (CSE), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation (QF), Doha 5825, Qatar)

  • Yusuf Bicer

    (Division of Sustainable Development (DSD), College of Science and Engineering (CSE), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation (QF), Doha 5825, Qatar)

Abstract

This study analyzes the possibility to use the wind’s kinetic energy to produce electricity in Northern Qatar for the natural gas processing industry. An evaluation of the wind potentiality is performed based on a thorough analysis of parameters such as wind speed and direction, temperature, atmospheric pressure, and air density. In addition, based on the measured parameters, a commercial wind turbine is selected, and a case study is presented in order to quantify the energy that a wind farm could produce and its environmental benefits. Furthermore, an economical assessment is made to quantify the repercussions that it could produce if this wind farm substitutes a fraction of the energy demand (within the oil and gas field) that is currently generated by traditional hydrocarbons. The results indicate that the environmental parameters, led by a 5.06 m/s wind speed mean, allow the production of wind energy in the area with an annual CO 2 savings of 6.813 tons in a 17 MW wind power plant. This enables Qatar to reduce its internal oil and gas consumption. As a result, the amount of hydrocarbon (natural gas) saved could be used for exportation purposes, generating a positive outcome for the economy with a cost savings of about 3.32 million US$ per year through such a small size wind power plant. From the energy production point of view, the natural parameters enable a single wind turbine to produce an average of 6995.26 MWh of electricity. Furthermore, the wind farm utilized in the case study is capable of generating an average of 34.976 MWh in a year.

Suggested Citation

  • Carlos Méndez & Yusuf Bicer, 2019. "Qatar’s Wind Energy Potential with Associated Financial and Environmental Benefits for the Natural Gas Industry," Energies, MDPI, vol. 12(17), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3329-:d:261961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3329/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Florin Onea & Eugen Rusu, 2019. "An Assessment of Wind Energy Potential in the Caspian Sea," Energies, MDPI, vol. 12(13), pages 1-18, July.
    2. Marafia, A-Hamid & Ashour, Hamdy A., 2003. "Economics of off-shore/on-shore wind energy systems in Qatar," Renewable Energy, Elsevier, vol. 28(12), pages 1953-1963.
    3. Quetzalcoatl Hernandez-Escobedo & Javier Garrido & Fernando Rueda-Martinez & Gerardo Alcalá & Alberto-Jesus Perea-Moreno, 2019. "Wind Power Cogeneration to Reduce Peak Electricity Demand in Mexican States Along the Gulf of Mexico," Energies, MDPI, vol. 12(12), pages 1-22, June.
    4. Atalay, Yasemin & Biermann, Frank & Kalfagianni, Agni, 2016. "Adoption of renewable energy technologies in oil-rich countries: Explaining policy variation in the Gulf Cooperation Council states," Renewable Energy, Elsevier, vol. 85(C), pages 206-214.
    5. Mohammed Redha Qader, 2009. "Electricity Consumption and GHG Emissions in GCC Countries," Energies, MDPI, vol. 2(4), pages 1-13, December.
    6. Birgir Freyr Ragnarsson & Gudmundur V. Oddsson & Runar Unnthorsson & Birgir Hrafnkelsson, 2015. "Levelized Cost of Energy Analysis of a Wind Power Generation System at Búrfell in Iceland," Energies, MDPI, vol. 8(9), pages 1-22, September.
    7. Ali Marjan & Mahmood Shafiee, 2018. "Evaluation of Wind Resources and the Effect of Market Price Components on Wind-Farm Income: A Case Study of Ørland in Norway," Energies, MDPI, vol. 11(11), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saif Mubaarak & Delong Zhang & Jinxin Liu & Yongcong Chen & Longze Wang & Sayed A. Zaki & Rongfang Yuan & Jing Wu & Yan Zhang & Meicheng Li, 2020. "Potential Techno-Economic Feasibility of Hybrid Energy Systems for Electrifying Various Consumers in Yemen," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    2. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.
    3. Valliyil Mohammed Aboobacker & Puthuveetil Razak Shanas & Subramanian Veerasingam & Ebrahim M. A. S. Al-Ansari & Fadhil N. Sadooni & Ponnumony Vethamony, 2021. "Long-Term Assessment of Onshore and Offshore Wind Energy Potentials of Qatar," Energies, MDPI, vol. 14(4), pages 1-21, February.
    4. Okonkwo, Eric C. & Wole-Osho, Ifeoluwa & Bamisile, Olusola & Abid, Muhammad & Al-Ansari, Tareq, 2021. "Grid integration of renewable energy in Qatar: Potentials and limitations," Energy, Elsevier, vol. 235(C).
    5. Ahmed K. Nassar, 2022. "Identifying and Explaining Public Preferences for Renewable Energy Sources in Qatar," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    6. Jesús Rascón & Wildor Gosgot Angeles & Manuel Oliva-Cruz & Miguel Ángel Barrena Gurbillón, 2022. "Wind Characteristics and Wind Energy Potential in Andean Towns in Northern Peru between 2016 and 2020: A Case Study of the City of Chachapoyas," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
    7. Abdulla Al Wahedi & Yusuf Bicer, 2020. "A Case Study in Qatar for Optimal Energy Management of an Autonomous Electric Vehicle Fast Charging Station with Multiple Renewable Energy and Storage Systems," Energies, MDPI, vol. 13(19), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Maamary, Hilal M.S. & Kazem, Hussein A. & Chaichan, Miqdam T., 2017. "Climate change: The game changer in the Gulf Cooperation Council Region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 555-576.
    2. Zhongdong Yu & Wei Liu & Liming Chen & Serkan Eti & Hasan Dinçer & Serhat Yüksel, 2019. "The Effects of Electricity Production on Industrial Development and Sustainable Economic Growth: A VAR Analysis for BRICS Countries," Sustainability, MDPI, vol. 11(21), pages 1-13, October.
    3. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    4. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    5. Ahmed Saddam, 2015. "Variance Decomposition of Emissions, FDI, Growth and Imports in GCC countries: A Macroeconomic Analysis," International Journal of Management Science and Business Administration, Inovatus Services Ltd., vol. 1(6), pages 118-126, May.
    6. Dongheon Shin & Kyungnam Ko, 2019. "Application of the Nacelle Transfer Function by a Nacelle-Mounted Light Detection and Ranging System to Wind Turbine Power Performance Measurement," Energies, MDPI, vol. 12(6), pages 1-15, March.
    7. Alam, Md. Mahbub & Rehman, Shafiqur & Meyer, Josua P. & Al-Hadhrami, Luai M., 2011. "Review of 600–2500kW sized wind turbines and optimization of hub height for maximum wind energy yield realization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3839-3849.
    8. Geovanni Hernández Galvez & Daniel Chuck Liévano & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & José Rafael Dorrego Portela & Antonio Trujillo Narcía & Ricardo Saldaña Flores & Liliana P, 2022. "Harnessing Offshore Wind Energy along the Mexican Coastline in the Gulf of Mexico—An Exploratory Study including Sustainability Criteria," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    9. Dyah Maya Nihayah & Evi Gravitiani & Siti Aisyah Tri Rahayu, 2021. "Does the Clean Development Mechanism Exist in Developing Countries After an International Agreement?," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 409-417.
    10. Mohandes, M. & Rehman, S. & Rahman, S.M., 2011. "Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)," Applied Energy, Elsevier, vol. 88(11), pages 4024-4032.
    11. Teklebrhan Negash & Erik Möllerström & Fredric Ottermo, 2020. "An Assessment of Wind Energy Potential for the Three Topographic Regions of Eritrea," Energies, MDPI, vol. 13(7), pages 1-12, April.
    12. Mostafaeipour, Ali, 2010. "Feasibility study of offshore wind turbine installation in Iran compared with the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1722-1743, September.
    13. Tatiana Nevzorova, 2020. "Biogas Production in the Russian Federation: Current Status, Potential, and Barriers," Energies, MDPI, vol. 13(14), pages 1-21, July.
    14. Bahaj, AbuBakr S. & Mahdy, Mostafa & Alghamdi, Abdulsalam S. & Richards, David J., 2020. "New approach to determine the Importance Index for developing offshore wind energy potential sites: Supported by UK and Arabian Peninsula case studies," Renewable Energy, Elsevier, vol. 152(C), pages 441-457.
    15. Al-Nassar, W.K. & Neelamani, S. & Al-Salem, K.A. & Al-Dashti, H.A., 2019. "Feasibility of offshore wind energy as an alternative source for the state of Kuwait," Energy, Elsevier, vol. 169(C), pages 783-796.
    16. Rehman, Shafiqur, 2005. "Prospects of wind farm development in Saudi Arabia," Renewable Energy, Elsevier, vol. 30(3), pages 447-463.
    17. Li, H. & Chen, Z., 2009. "Design optimization and site matching of direct-drive permanent magnet wind power generator systems," Renewable Energy, Elsevier, vol. 34(4), pages 1175-1184.
    18. Patlitzianas, Konstantinos D. & Doukas, Haris & Psarras, John, 2006. "Enhancing renewable energy in the Arab States of the Gulf: Constraints & efforts," Energy Policy, Elsevier, vol. 34(18), pages 3719-3726, December.
    19. Tehreem Fatima & Grzegorz Mentel & Buhari Doğan & Zeeshan Hashim & Umer Shahzad, 2022. "Investigating the role of export product diversification for renewable, and non-renewable energy consumption in GCC (gulf cooperation council) countries: does the Kuznets hypothesis exist?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8397-8417, June.
    20. Alberto-Jesus Perea-Moreno & Francisco Manzano-Agugliaro, 2020. "Energy Saving at Cities," Energies, MDPI, vol. 13(15), pages 1-3, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3329-:d:261961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.