Novel Drying Methods for Sustainable Upcycling of Brewers’ Spent Grains as a Plant Protein Source
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Motevali, Ali & Minaei, Saeid & Khoshtaghaza, Mohammad Hadi & Amirnejat, Hamed, 2011. "Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices," Energy, Elsevier, vol. 36(11), pages 6433-6441.
- Sharma, G.P. & Prasad, Suresh, 2006. "Specific energy consumption in microwave drying of garlic cloves," Energy, Elsevier, vol. 31(12), pages 1921-1926.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Maria Królak & Hanna Górska-Warsewicz & Magdalena Mądra-Sawicka & Krystyna Rejman & Sylwia Żakowska-Biemans & Julita Szlachciuk & Maksymilian Czeczotko & Bartosz Kwiatkowski & Robert Zaremba & Michał , 2022. "Towards Sustainable Innovation in the Bakery Sector—An Example of Fibre-Enriched Bread," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
- Davide Assandri & Niccolò Pampuro & Giacomo Zara & Eugenio Cavallo & Marilena Budroni, 2020. "Suitability of Composting Process for the Disposal and Valorization of Brewer’s Spent Grain," Agriculture, MDPI, vol. 11(1), pages 1-12, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bhattacharya, Madhuchhanda & Basak, Tanmay, 2013. "A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface," Energy, Elsevier, vol. 55(C), pages 278-294.
- Singh, Shobhana & Kumar, Subodh, 2013. "Solar drying for different test conditions: Proposed framework for estimation of specific energy consumption and CO2 emissions mitigation," Energy, Elsevier, vol. 51(C), pages 27-36.
- Ranjbaran, M. & Zare, D., 2013. "Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans," Energy, Elsevier, vol. 59(C), pages 484-493.
- Liu, Zi-Liang & Zielinska, Magdalena & Yang, Xu-Hai & Yu, Xian-Long & Chen, Chang & Wang, Hui & Wang, Jun & Pan, Zhongli & Xiao, Hong-Wei, 2021. "Moisturizing strategy for enhanced convective drying of mushroom slices," Renewable Energy, Elsevier, vol. 172(C), pages 728-739.
- Bhattacharya, Madhuchhanda & Basak, Tanmay, 2016. "A review on the susceptor assisted microwave processing of materials," Energy, Elsevier, vol. 97(C), pages 306-338.
- Azadbakht, Mohsen & Torshizi, Mohammad Vahedi & Noshad, Fatemeh & Rokhbin, Arash, 2018. "Application of artificial neural network method for prediction of osmotic pretreatment based on the energy and exergy analyses in microwave drying of orange slices," Energy, Elsevier, vol. 165(PB), pages 836-845.
- Dhayaneswaran, Y. & Ashok Kumar, L., 2014. "A study on current characteristics of induction motor while operating at its base frequency in textile industry," Energy, Elsevier, vol. 74(C), pages 340-345.
- Chen, N.N. & Chen, M.Q. & Fu, B.A. & Song, J.J., 2017. "Far-infrared irradiation drying behavior of typical biomass briquettes," Energy, Elsevier, vol. 121(C), pages 726-738.
- Acevedo, Luis & Usón, Sergio & Uche, Javier, 2014. "Exergy transfer analysis of microwave heating systems," Energy, Elsevier, vol. 68(C), pages 349-363.
- Hasan Demir & Hande Demir & Biljana Lončar & Lato Pezo & Ivan Brandić & Neven Voća & Fatma Yilmaz, 2023. "Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics," Energies, MDPI, vol. 16(4), pages 1-14, February.
- Darvishi, Hosain & Khodaei, Jalal & Behroozi-Khazaei, Nasser & Salami, Payman & Akhijahani, Hadi Samimi, 2023. "Greenhouse gas emission reduction potential, energy and exergy analysis of combined microwave-convective dryer," Energy, Elsevier, vol. 285(C).
- Yuan, Yuejin & Ma, Kaikun & Xu, Yingying & Yang, LiJia & Li, Yan & Lin, Xi & Yuan, Yueding, 2022. "Research on operation performance of multi-heat source complementary system of combined drying based on TRNSYS," Renewable Energy, Elsevier, vol. 192(C), pages 769-783.
- Tohidi, Mojtaba & Sadeghi, Morteza & Torki-Harchegani, Mehdi, 2017. "Energy and quality aspects for fixed deep bed drying of paddy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 519-528.
- Zhao, Fan & Han, Feng & Zhang, Shiwei & Tian, Hanrong & Yang, Yi & Sun, Kun, 2018. "Vacuum drying kinetics and energy consumption analysis of LiFePO4 battery powder," Energy, Elsevier, vol. 162(C), pages 669-681.
- Adolf Rybka & Petr Heřmánek & Ivo Honzík, 2021. "Effect of drying temperature in hop dryer on hop quality," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(1), pages 1-7.
- Darvishi, Hosain & Azadbakht, Mohsen & Noralahi, Bashir, 2018. "Experimental performance of mushroom fluidized-bed drying: Effect of osmotic pretreatment and air recirculation," Renewable Energy, Elsevier, vol. 120(C), pages 201-208.
- Motevali, Ali & Minaei, Saeid & Khoshtaghaza, Mohammad Hadi & Amirnejat, Hamed, 2011. "Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices," Energy, Elsevier, vol. 36(11), pages 6433-6441.
- Li, K. & Zhang, Y. & Wang, Y.F. & El-Kolaly, W. & Gao, M. & Sun, W. & Li, M., 2021. "Effects of drying variables on the characteristic of the hot air drying for gastrodia elata: Experiments and multi-variable model," Energy, Elsevier, vol. 222(C).
- Balbay, Asim & Kaya, Yilmaz & Sahin, Omer, 2012. "Drying of black cumin (Nigella sativa) in a microwave assisted drying system and modeling using extreme learning machine," Energy, Elsevier, vol. 44(1), pages 352-357.
- Palamutcu, S., 2010. "Electric energy consumption in the cotton textile processing stages," Energy, Elsevier, vol. 35(7), pages 2945-2952.
More about this item
Keywords
Brewers’ spent grain (BSG); drying kinetics; protein functionality; dehydration techniques; exergy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3660-:d:353050. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.