IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v21y2016i2p233-247.html
   My bibliography  Save this article

Impact of climate change on regional irrigation water demand in Baojixia irrigation district of China

Author

Listed:
  • Xiao-jun Wang
  • Jian-yun Zhang
  • Mahtab Ali
  • Shamsuddin Shahid
  • Rui-min He
  • Xing-hui Xia
  • Zhuo Jiang

Abstract

Water scarcity in China would possibly be aggravated by rapid increase in water demand for irrigation due to climate change. This paper focuses on the mechanism of climate change impact on regional irrigation water demand by considering the dynamic feedback relationships among climate change, irrigation water demand and adaptation measures. The model in implemented using system dynamics approach and employed in Baojixia irrigation district located in Shaanxi Province of China to analyses the changes in irrigation water demand under different climate change scenarios. Obtained results revealed that temperature will be the dominant factor to determine irrigation water demand in the area. An increase of temperature by 1 °C will result in net irrigation water demand to increase by about 12,050 × 10 4 m 3 and gross water demand by about 20,080 × 10 4 m 3 in the area. However, irrigation water demand will not increase at the same rate of temperature rise as the adaptation measures will eventually reduce the water demand increased by temperature rise. It is expected that the modeling approach presented in this study can be used in adopting policy responses to reduce climate change impacts on water resources. Copyright Springer Science+Business Media Dordrecht 2016

Suggested Citation

  • Xiao-jun Wang & Jian-yun Zhang & Mahtab Ali & Shamsuddin Shahid & Rui-min He & Xing-hui Xia & Zhuo Jiang, 2016. "Impact of climate change on regional irrigation water demand in Baojixia irrigation district of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(2), pages 233-247, February.
  • Handle: RePEc:spr:masfgc:v:21:y:2016:i:2:p:233-247
    DOI: 10.1007/s11027-014-9594-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-014-9594-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-014-9594-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amgad Elmahdi & Hector Malano & Teri Etchells, 2007. "Using system dynamics to model water-reallocation," Environment Systems and Decisions, Springer, vol. 27(1), pages 3-12, March.
    2. Kathleen Miller & Valerie Belton, 2014. "Water resource management and climate change adaptation: a holistic and multiple criteria perspective," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(3), pages 289-308, March.
    3. De Silva, C.S. & Weatherhead, E.K. & Knox, J.W. & Rodriguez-Diaz, J.A., 2007. "Predicting the impacts of climate change--A case study of paddy irrigation water requirements in Sri Lanka," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 19-29, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    2. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    3. Mohammad Naser Sediqi & Mohammed Sanusi Shiru & Mohamed Salem Nashwan & Rawshan Ali & Shadan Abubaker & Xiaojun Wang & Kamal Ahmed & Shamsuddin Shahid & Md. Asaduzzaman & Sayed Mir Agha Manawi, 2019. "Spatio-Temporal Pattern in the Changes in Availability and Sustainability of Water Resources in Afghanistan," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    4. Potopová, V. & Trnka, M. & Vizina, A. & Semerádová, D. & Balek, J. & Chawdhery, M.R.A. & Musiolková, M. & Pavlík, P. & Možný, M. & Štěpánek, P. & Clothier, B., 2022. "Projection of 21st century irrigation water requirements for sensitive agricultural crop commodities across the Czech Republic," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Becker, Rike & Schüth, Christoph & Merz, Ralf & Khaliq, Tasneem & Usman, Muhammad & Beek, Tim aus der & Kumar, Rohini & Schulz, Stephan, 2023. "Increased heat stress reduces future yields of three major crops in Pakistan’s Punjab region despite intensification of irrigation," Agricultural Water Management, Elsevier, vol. 281(C).
    6. Saleem A. Salman & Shamsuddin Shahid & Haitham Abdulmohsin Afan & Mohammed Sanusi Shiru & Nadhir Al-Ansari & Zaher Mundher Yaseen, 2020. "Changes in Climatic Water Availability and Crop Water Demand for Iraq Region," Sustainability, MDPI, vol. 12(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-jun Wang & Jian-yun Zhang & Shamsuddin Shahid & En-hong Guan & Yong-xiang Wu & Juan Gao & Rui-min He, 2016. "Adaptation to climate change impacts on water demand," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 81-99, January.
    2. Madan K. Jha & Richard C. Peralta & Sasmita Sahoo, 2020. "Simulation-Optimization for Conjunctive Water Resources Management and Optimal Crop Planning in Kushabhadra-Bhargavi River Delta of Eastern India," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    3. Tamiru Lemi & Fekadu Hailu, 2019. "Effects of Climate Change Variability on Agricultural Productivity," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 17(1), pages 14-20, February.
    4. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    5. Pathiraja, Erandathie & Griffith, Garry & Farquharson, Robert & Faggia, Rob, 2019. "The Cost of Climate Change to Agricultural Industries: Coconuts in Sri Lanka," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 10(05), December.
    6. Michailidou, Alexandra V. & Vlachokostas, Christos & Moussiopoulos, Νicolas, 2016. "Interactions between climate change and the tourism sector: Multiple-criteria decision analysis to assess mitigation and adaptation options in tourism areas," Tourism Management, Elsevier, vol. 55(C), pages 1-12.
    7. Wang Xiao-jun & Zhang Jian-yun & Wang Jian-hua & He Rui-min & Amgad ElMahdi & Liu Jin-hua & Wang Xin-gong & David King & Shamsuddin Shahid, 2014. "Climate change and water resources management in Tuwei river basin of Northwest China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(1), pages 107-120, January.
    8. Zhang, Qingsong & Sun, Jiahao & Zhang, Guangxin & Liu, Xuemei & Wu, Yanfeng & Sun, Jingxuan & Hu, Boting, 2023. "Spatiotemporal dynamics of water supply–demand patterns under large-scale paddy expansion: Implications for regional sustainable water resource management," Agricultural Water Management, Elsevier, vol. 285(C).
    9. Lanie A. Alejo & Victor B. Ella & Rubenito M. Lampayan & Aurelio A. Delos Reyes, 2021. "Assessing the impacts of climate change on irrigation diversion water requirement in the Philippines," Climatic Change, Springer, vol. 165(3), pages 1-17, April.
    10. Karen Villholth & Lorraine Rajasooriyar, 2010. "Groundwater Resources and Management Challenges in Sri Lanka–an Overview," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1489-1513, June.
    11. Varela-Ortega, Consuelo, 2011. "Participatory Modeling for Sustainable Development in Water and Agrarian Systems: Potential and Limits of Stakeholder Involvement," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 115546, European Association of Agricultural Economists.
    12. Rey, D. & Holman, I.P. & Daccache, A. & Morris, J. & Weatherhead, E.K. & Knox, J.W., 2016. "Modelling and mapping the economic value of supplemental irrigation in a humid climate," Agricultural Water Management, Elsevier, vol. 173(C), pages 13-22.
    13. Wang, Weiguang & Yu, Zhongbo & Zhang, Wei & Shao, Quanxi & Zhang, Yiwei & Luo, Yufeng & Jiao, Xiyun & Xu, Junzeng, 2014. "Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections," Agricultural Water Management, Elsevier, vol. 146(C), pages 249-261.
    14. Rowshon, M.K. & Dlamini, N.S. & Mojid, M.A. & Adib, M.N.M. & Amin, M.S.M. & Lai, S.H., 2019. "Modeling climate-smart decision support system (CSDSS) for analyzing water demand of a large-scale rice irrigation scheme," Agricultural Water Management, Elsevier, vol. 216(C), pages 138-152.
    15. Eriyagama, Nishadi & Smakhtin, Vladimir U. & Chandrapala, Lalith & Fernando, Karin, 2010. "Impacts of climate change on water resources and agriculture in Sri Lanka: a review and preliminary vulnerability mapping," IWMI Research Reports 94787, International Water Management Institute.
    16. Xiao-jun Wang & Jian-yun Zhang & Jiu-fu Liu & Guo-qing Wang & Rui-min He & Amgad Elmahdi & Sondoss Elsawah, 2011. "Water resources planning and management based on system dynamics: a case study of Yulin city," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(2), pages 331-351, April.
    17. Hong, Eun-Mi & Nam, Won-Ho & Choi, Jin-Yong & Pachepsky, Yakov A., 2016. "Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea," Agricultural Water Management, Elsevier, vol. 165(C), pages 163-180.
    18. Mohamed Esham & Brent Jacobs & Hewage Sunith Rohitha Rosairo & Balde Boubacar Siddighi, 2018. "Climate change and food security: a Sri Lankan perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1017-1036, June.
    19. Sirimanna, S. & Kahathuduwa, K.K.P.N. & Prasada, D.V.P., 2022. "Are cascade reservoir systems sustainable agroecosystems? A comparative assessment of efficiency, effectiveness and resource footprint in a Sri Lankan micro-cascade," Agricultural Systems, Elsevier, vol. 203(C).
    20. Wickramasinghe, M.R.C.P. & Dayawansa, N.D.K. & Jayasiri, M.M.J.G.C.N. & De Silva, Ranjith Premalal, 2023. "A study on external pressures of an ancient irrigation cascade system in Sri Lanka," Agricultural Systems, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:21:y:2016:i:2:p:233-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.