IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3258-d346694.html
   My bibliography  Save this article

Desertification Control Practices in China

Author

Listed:
  • Yanli Lyu

    (Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai 519087, China
    Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Peijun Shi

    (Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Guoyi Han

    (Stockholm Environment Institute, 104 51 Stockholm, Sweden)

  • Lianyou Liu

    (Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Beijing Normal University, Beijing 100875, China)

  • Lanlan Guo

    (Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Xia Hu

    (Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Guoming Zhang

    (Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Beijing Normal University, Beijing 100875, China)

Abstract

Desertification is a form of land degradation principally in semi-arid and arid areas influenced by climatic and human factors. As a country plagued by extensive sandy desertification and frequent sandstorms and dust storms, China has been trying to find ways to achieve the sustainable management of desertified lands. This paper reviewed the impact of climate change and anthropogenic activities on desertified areas, and the effort, outcome, and lessons learned from desertification control in China. Although drying and warming trends and growing population pressures exist in those areas, the expanding trend of desertified land achieved an overall reversal. In the past six decades, many efforts, including government policies, forestry, and desertification control programs, combined with eco-industrialization development, have been integrated to control the desertification in northern China. Positive human intervention including afforestation, and the rehabilitation of mobile sandy land, and water conservation have facilitated the return of arid and semi-arid ecosystems to a more balanced state. China’s practices in desertification control could provide valuable knowledge for sustainable desertified land management on a global scale.

Suggested Citation

  • Yanli Lyu & Peijun Shi & Guoyi Han & Lianyou Liu & Lanlan Guo & Xia Hu & Guoming Zhang, 2020. "Desertification Control Practices in China," Sustainability, MDPI, vol. 12(8), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3258-:d:346694
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3258/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    2. David S. G. Thomas & Melanie Knight & Giles F. S. Wiggs, 2005. "Remobilization of southern African desert dune systems by twenty-first century global warming," Nature, Nature, vol. 435(7046), pages 1218-1221, June.
    3. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng-Hong Kong & Lindsay Stringer & Jouni Paavola & Qi Lu, 2021. "Situating China in the Global Effort to Combat Desertification," Land, MDPI, vol. 10(7), pages 1-22, July.
    2. Jiayi Sun & Deqing Tan, 2023. "Non-cooperative Mode, Cost-Sharing Mode, or Cooperative Mode: Which is the Optimal Mode for Desertification Control?," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 975-1008, March.
    3. Vito Imbrenda & Rosa Coluzzi & Valerio Di Stefano & Gianluca Egidi & Luca Salvati & Caterina Samela & Tiziana Simoniello & Maria Lanfredi, 2022. "Modeling Spatio-Temporal Divergence in Land Vulnerability to Desertification with Local Regressions," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    4. Alexander Esaulko & Vladimir Sitnikov & Elena Pismennaya & Olga Vlasova & Evgeniy Golosnoi & Alena Ozheredova & Anna Ivolga & Vasilii Erokhin, 2022. "Productivity of Winter Wheat Cultivated by Direct Seeding: Measuring the Effect of Hydrothermal Coefficient in the Arid Zone of Central Fore-Caucasus," Agriculture, MDPI, vol. 13(1), pages 1-17, December.
    5. Haonian Li & Zhongju Meng & Xiaohong Dang & Puchang Yang, 2022. "Checkerboard Barriers Attenuate Soil Particle Loss and Promote Nutrient Contents of Soil," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    6. Jinmeng Lee & Xiaojun Yin & Honghui Zhu & Xin Zheng, 2023. "Geographical Detector-Based Research of Spatiotemporal Evolution and Driving Factors of Oasification and Desertification in Manas River Basin, China," Land, MDPI, vol. 12(8), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry A. Ruban & Natalia N. Yashalova & Olga A. Cherednichenko & Natalya A. Dovgot’ko, 2020. "Climate Change, Agriculture, and Energy Transition: What Do the Thirty Most-Cited Articles Tell Us?," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    2. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    3. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    4. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    5. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    6. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    7. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    8. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    9. Anne A. Gharaibeh & Esra’a M. Al.Zu’bi & Lama B. Abuhassan, 2019. "Amman ( City of Waters ); Policy, Land Use, and Character Changes," Land, MDPI, vol. 8(12), pages 1-25, December.
    10. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    11. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    12. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    13. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    14. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    15. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    16. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    17. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    18. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    19. Yulong Shu & Kai Lin & Yafang Yu, 2024. "Study on Urban Land Simulation under the Perspective of Local Climate Zoning—A Case Study of Guiyang City," Sustainability, MDPI, vol. 16(18), pages 1-19, September.
    20. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3258-:d:346694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.