IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i8d10.1007_s10668-021-01848-5.html
   My bibliography  Save this article

Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)

Author

Listed:
  • Isaac Sarfo

    (Nanjing University of Information Science and Technology)

  • Bi Shuoben

    (Nanjing University of Information Science and Technology)

  • Li Beibei

    (Nanjing University of Information Science and Technology
    Nanjing University of Information Science and Technology)

  • Solomon Obiri Yeboah Amankwah

    (Nanjing University of Information Science and Technology)

  • Emmanuel Yeboah

    (University of Ghana)

  • John Ernest Koku

    (Central University)

  • Edward Kweku Nunoo

    (University of Cape Coast and Department of Environment & Development Studies, Central University)

  • Clement Kwang

    (University of Ghana)

Abstract

This study assesses the spatiotemporal development of land use systems and climate variability in Southwestern Ghana over the past five decades using integrated remote sensing techniques and existing literature. We demonstrated the relationship between Normalized Difference Vegetative Index, Normalized Difference Water Index, Normalized Difference Built-up Index, surface temperature and precipitation using geoinformatics and Pearson’s correlation coefficient (r). We found change in land use systems in Southwestern Ghana to be immensely driven by economic and socio-political factors. Interestingly, some biophysical factors have somewhat contributed to this change. Findings revealed a drastic decline in forested areas (−334.8 km2 yr−1) and waterbodies (−4.79 km2 yr−1), along with a dramatic increase in built-up (+137.93 km2 yr−1) and farmlands/shrubs (+131.97 km2 yr−1). Change in prevailing microclimatic conditions can be associated with land cover change, considering the impact of major drivers observed over the given period. Results showed a very weak positive correlation between vegetation and temperature (r = 0.214). Similarly, built-up correlated positively with vegetation (r = 0.165), water-index (r = 0.818; strong correlation or evidence of association) and temperature (r = 0.266). In contrast, other used variables correlated negatively with precipitation. The study serves a seminal guide to land use developers and institutors for effective and sustainable use of natural resources.

Suggested Citation

  • Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:8:d:10.1007_s10668-021-01848-5
    DOI: 10.1007/s10668-021-01848-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01848-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01848-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    2. Mozammel Huq & Michael Tribe, 2018. "The Economy of Ghana," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-137-60243-5, December.
    3. Cai, Jialiang & Yin, He & Varis, Olli, 2016. "Impacts of industrial transition on water use intensity and energy-related carbon intensity in China: A spatio-temporal analysis during 2003–2012," Applied Energy, Elsevier, vol. 183(C), pages 1112-1122.
    4. Singh, M.P. & Bhojvaid, P.P. & de Jong, Wil & Ashraf, J. & Reddy, S.R., 2017. "Forest transition and socio-economic development in India and their implications for forest transition theory," Forest Policy and Economics, Elsevier, vol. 76(C), pages 65-71.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    2. Chen, Kunqiu & Long, Hualou & Liao, Liuwen & Tu, Shuangshuang & Li, Tingting, 2020. "Land use transitions and urban-rural integrated development: Theoretical framework and China’s evidence," Land Use Policy, Elsevier, vol. 92(C).
    3. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    4. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    5. Anne A. Gharaibeh & Esra’a M. Al.Zu’bi & Lama B. Abuhassan, 2019. "Amman ( City of Waters ); Policy, Land Use, and Character Changes," Land, MDPI, vol. 8(12), pages 1-25, December.
    6. Zhang, Pingdan & Yuan, Haoming & Bai, Fuli & Tian, Xin & Shi, Feng, 2018. "How do carbon dioxide emissions respond to industrial structural transitions? Empirical results from the northeastern provinces of China," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 145-154.
    7. Tian, Guangjin & Jiang, Jing & Yang, Zhifeng & Zhang, Yaoqi, 2011. "The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China," Ecological Modelling, Elsevier, vol. 222(3), pages 865-878.
    8. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.
    9. Quiroga, Sonia & Suárez, Cristina & Hernanz, Virginia & Aguiño, José Evelio & Fernández-Manjarrés, Juan F., 2024. "Analysing post-conflict policies to enhance socio-ecological restoration among black communities in Southern Colombia: Cacao cropping as a win–win strategy," Forest Policy and Economics, Elsevier, vol. 163(C).
    10. Yali Zhong & Shuqing Chen & Haihua Mo & Weiwen Wang & Pengfei Yu & Xuemei Wang & Nima Chuduo & Bian Ba, 2022. "Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau," Climatic Change, Springer, vol. 175(1), pages 1-22, November.
    11. Lina Eklund & Abdulhakim Abdi & Mine Islar, 2017. "From Producers to Consumers: The Challenges and Opportunities of Agricultural Development in Iraqi Kurdistan," Land, MDPI, vol. 6(2), pages 1-14, June.
    12. Yuling Sun & Junsong Jia & Min Ju & Chundi Chen, 2022. "Spatiotemporal Dynamics of Direct Carbon Emission and Policy Implication of Energy Transition for China’s Residential Consumption Sector by the Methods of Social Network Analysis and Geographically We," Land, MDPI, vol. 11(7), pages 1-26, July.
    13. Xiaolong Jin & Penghui Jiang & Haoyang Du & Dengshuai Chen & Manchun Li, 2021. "Response of local temperature variation to land cover and land use intensity changes in China over the last 30 years," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    14. Myeong Ja Kwak & Jong Kyu Lee & Sanghee Park & Yea Ji Lim & Handong Kim & Kyeong Nam Kim & Sun Mi Je & Chan Ryul Park & Su Young Woo, 2020. "Evaluation of the Importance of Some East Asian Tree Species for Refinement of Air Quality by Estimating Air Pollution Tolerance Index, Anticipated Performance Index, and Air Pollutant Uptake," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    15. Ge Shi & Peng Ye & Liang Ding & Agustin Quinones & Yang Li & Nan Jiang, 2019. "Spatio-Temporal Patterns of Land Use and Cover Change from 1990 to 2010: A Case Study of Jiangsu Province, China," IJERPH, MDPI, vol. 16(6), pages 1-19, March.
    16. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    17. Kai Jin & Fei Wang & Deliang Chen & Qiao Jiao & Lei Xia & Luuk Fleskens & Xingmin Mu, 2015. "Assessment of urban effect on observed warming trends during 1955–2012 over China: a case of 45 cities," Climatic Change, Springer, vol. 132(4), pages 631-643, October.
    18. Valerio Moretti & Luca Salvati & Massimo Cecchini & Ilaria Zambon, 2019. "A Long-Term Analysis of Demographic Processes, Socioeconomic ‘Modernization’ and Forest Expansion in a European Country," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    19. Maria Silva Dias & Juliana Dias & Leila Carvalho & Edmilson Freitas & Pedro Silva Dias, 2013. "Changes in extreme daily rainfall for São Paulo, Brazil," Climatic Change, Springer, vol. 116(3), pages 705-722, February.
    20. Sridhara Nayak & Suman Maity & Kuvar S. Singh & Hara Prasad Nayak & Soma Dutta, 2021. "Influence of the Changes in Land-Use and Land Cover on Temperature over Northern and North-Eastern India," Land, MDPI, vol. 10(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:8:d:10.1007_s10668-021-01848-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.