IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3243-d346461.html
   My bibliography  Save this article

Quantile Dependence in Tourism Demand Time Series: Evidence in the Southern Italy Market

Author

Listed:
  • Giovanni De Luca

    (Department of Management and Quantitative Studies, University of Naples Parthenope, 80132 Naples, Italy)

  • Monica Rosciano

    (Department of Management and Quantitative Studies, University of Naples Parthenope, 80132 Naples, Italy)

Abstract

Travel and tourism is an important economic activity in most countries around the world. In 2018, international tourist arrivals grew 5% to reach the 1.4 billion mark and at the same time export earnings generated by tourism have grown to USD 1.7 trillion. The rapid growth of the tourism industry has globally attracted the interest of researchers for a long time. The literature has tried to model tourism demand to analyze the effects of different factors and predict the future behavior of the demand. Forecasting of tourism demand is crucial not only for academia but for tourism industries too, especially in line with the principles of sustainable tourism. The hospitality branch is an important part of the tourism industry and accurate passenger flow forecasting is a key link in the governance of the resources of a destination or in revenue management systems. In this context, the paper studies the interdependence of tourism demand in one of the main Italian tourist destinations, the Campania region, using a quantile-on-quantile approach between overall and specific tourism demand. Data are represented by monthly arrivals and nights spent by residents and non-residents in hotels and complementary accommodations from January 2008 to December 2018. The results of the analysis show that the hotel-accommodation component of the tourism demand appears to be more vulnerable than extra-hotel accommodation component to the fluctuations of the overall tourism demand and this feature is more evident for the arrivals than for nights spent. Moreover, the dependence on high quantiles suggests strategy of diversification or market segmentation to avoid overtourism phenomena and/or carrying capacity problems. Conversely, dependence on low quantiles suggests the use of push strategies to stimulate tourism demand. Finally, the results suggest that it could be very useful if the stakeholders of the tourism sector in Campania focused their attention on the collaboration theory.

Suggested Citation

  • Giovanni De Luca & Monica Rosciano, 2020. "Quantile Dependence in Tourism Demand Time Series: Evidence in the Southern Italy Market," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3243-:d:346461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shahzad, Syed Jawad Hussain & Naifar, Nader & Hammoudeh, Shawkat & Roubaud, David, 2017. "Directional predictability from oil market uncertainty to sovereign credit spreads of oil-exporting countries: Evidence from rolling windows and crossquantilogram analysis," Energy Economics, Elsevier, vol. 68(C), pages 327-339.
    2. Anna Maria Fiori & Ilaria Foroni, 2019. "Reservation Forecasting Models for Hospitality SMEs with a View to Enhance Their Economic Sustainability," Sustainability, MDPI, vol. 11(5), pages 1-24, February.
    3. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    4. Štefan Lyócsa & Petra Vašaničová & Eva Litavcová, 2020. "Quantile dependence of tourism activity between Southern European countries," Applied Economics Letters, Taylor & Francis Journals, vol. 27(3), pages 206-212, February.
    5. Cynthia Hardy & Nelson Phillips & Thomas B. Lawrence, 2003. "Resources, Knowledge and Influence: The Organizational Effects of Interorganizational Collaboration," Journal of Management Studies, Wiley Blackwell, vol. 40(2), pages 321-347, March.
    6. Baumöhl, Eduard & Lyócsa, Štefan, 2017. "Directional predictability from stock market sector indices to gold: A cross-quantilogram analysis," Finance Research Letters, Elsevier, vol. 23(C), pages 152-164.
    7. Binru Zhang & Yulian Pu & Yuanyuan Wang & Jueyou Li, 2019. "Forecasting Hotel Accommodation Demand Based on LSTM Model Incorporating Internet Search Index," Sustainability, MDPI, vol. 11(17), pages 1-14, August.
    8. Musallam Abedtalas, 2015. "The Determinants of Tourism Demand in Turkey," Journal of Economics and Behavioral Studies, AMH International, vol. 7(4), pages 90-105.
    9. Muzi Zhang & Junyi Li & Bing Pan & Gaojun Zhang, 2018. "Weekly Hotel Occupancy Forecasting of a Tourism Destination," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    10. Andrea Mervar & James E. Payne, 2007. "Analysis of Foreign Tourism Demand for Croatian Destinations: Long-Run Elasticity Estimates," Tourism Economics, , vol. 13(3), pages 407-420, September.
    11. George M. Agiomirgianakis & George Sfakianakis, 2016. "Explaining Tourism Inflows in Greece: A Macroeconometric Approach," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(4), pages 192-197, April.
    12. Witt, Stephen F. & Witt, Christine A., 1995. "Forecasting tourism demand: A review of empirical research," International Journal of Forecasting, Elsevier, vol. 11(3), pages 447-475, September.
    13. Shahzad, Syed Jawad Hussain & Shahbaz, Muhammad & Ferrer, Román & Kumar, Ronald Ravinesh, 2017. "Tourism-led growth hypothesis in the top ten tourist destinations: New evidence using the quantile-on-quantile approach," Tourism Management, Elsevier, vol. 60(C), pages 223-232.
    14. Linton, O. & Whang, Yoon-Jae, 2007. "The quantilogram: With an application to evaluating directional predictability," Journal of Econometrics, Elsevier, vol. 141(1), pages 250-282, November.
    15. Nada Kulendran & Sarath Divisekera, 2007. "Measuring the Economic Impact of Australian Tourism Marketing Expenditure," Tourism Economics, , vol. 13(2), pages 261-274, June.
    16. Akın, Melda, 2015. "A novel approach to model selection in tourism demand modeling," Tourism Management, Elsevier, vol. 48(C), pages 64-72.
    17. Hadavandi, Esmaeil & Ghanbari, Arash & Shahanaghi, Kamran & Abbasian-Naghneh, Salman, 2011. "Tourist arrival forecasting by evolutionary fuzzy systems," Tourism Management, Elsevier, vol. 32(5), pages 1196-1203.
    18. Todorova, Neda, 2017. "The intraday directional predictability of large Australian stocks: A cross-quantilogram analysis," Economic Modelling, Elsevier, vol. 64(C), pages 221-230.
    19. Ioannis Chatziantoniou & Stavros Degiannakis & Bruno Eeckels & George Filis, 2016. "Forecasting tourist arrivals using origin country macroeconomics," Applied Economics, Taylor & Francis Journals, vol. 48(27), pages 2571-2585, June.
    20. Li, Xin & Pan, Bing & Law, Rob & Huang, Xiankai, 2017. "Forecasting tourism demand with composite search index," Tourism Management, Elsevier, vol. 59(C), pages 57-66.
    21. Christine Lim, 1997. "An Econometric Classification and Review of International Tourism Demand Models," Tourism Economics, , vol. 3(1), pages 69-81, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anca-Gabriela Turtureanu & Rodica Pripoaie & Carmen-Mihaela Cretu & Carmen-Gabriela Sirbu & Emanuel Ştefan Marinescu & Laurentiu-Gabriel Talaghir & Florentina Chițu, 2022. "A Projection Approach of Tourist Circulation under Conditions of Uncertainty," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    2. Qian, Biyu & Wang, Gang-Jin & Feng, Yusen & Xie, Chi, 2022. "Partial cross-quantilogram networks: Measuring quantile connectedness of financial institutions," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Satish & Khalfaoui, Rabeh & Tiwari, Aviral Kumar, 2021. "Does geopolitical risk improve the directional predictability from oil to stock returns? Evidence from oil-exporting and oil-importing countries," Resources Policy, Elsevier, vol. 74(C).
    2. Chang, Hao-Wen & Chang, Tsangyao & Wang, Mei-Chih, 2024. "Revisit the impact of exchange rate on stock market returns during the pandemic period," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    3. Donald Lien & Zijun Wang, 2019. "Quantile information share," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 38-55, January.
    4. Cho, Dooyeon & Han, Heejoon, 2021. "The tail behavior of safe haven currencies: A cross-quantilogram analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 70(C).
    5. Labidi, Chiaz & Rahman, Md Lutfur & Hedström, Axel & Uddin, Gazi Salah & Bekiros, Stelios, 2018. "Quantile dependence between developed and emerging stock markets aftermath of the global financial crisis," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 179-211.
    6. Naeem, Muhammad Abubakr & Sadorsky, Perry & Karim, Sitara, 2023. "Sailing across climate-friendly bonds and clean energy stocks: An asymmetric analysis with the Gulf Cooperation Council Stock markets," Energy Economics, Elsevier, vol. 126(C).
    7. Kulshrestha, Anurag & Krishnaswamy, Venkataraghavan & Sharma, Mayank, 2020. "Bayesian BILSTM approach for tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 83(C).
    8. Shahzad, Syed Jawad Hussain & Rahman, Md Lutfur & Lucey, Brian M. & Uddin, Gazi Salah, 2021. "Re-examining the real option characteristics of gold for gold mining companies," Resources Policy, Elsevier, vol. 70(C).
    9. Corbet, Shaen & Katsiampa, Paraskevi & Lau, Chi Keung Marco, 2020. "Measuring quantile dependence and testing directional predictability between Bitcoin, altcoins and traditional financial assets," International Review of Financial Analysis, Elsevier, vol. 71(C).
    10. Rahman, Md Lutfur & Hedström, Axel & Uddin, Gazi Salah & Kang, Sang Hoon, 2021. "Quantile relationship between Islamic and non-Islamic equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    11. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    12. Uddin, Gazi Salah & Rahman, Md Lutfur & Hedström, Axel & Ahmed, Ali, 2019. "Cross-quantilogram-based correlation and dependence between renewable energy stock and other asset classes," Energy Economics, Elsevier, vol. 80(C), pages 743-759.
    13. Ali, Fahad & Bouri, Elie & Naifar, Nader & Shahzad, Syed Jawad Hussain & AlAhmad, Mohammad, 2022. "An examination of whether gold-backed Islamic cryptocurrencies are safe havens for international Islamic equity markets," Research in International Business and Finance, Elsevier, vol. 63(C).
    14. Razzaq, Asif & Sharif, Arshian & An, Hui & Aloui, Chaker, 2022. "Testing the directional predictability between carbon trading and sectoral stocks in China: New insights using cross-quantilogram and rolling window causality approaches," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    15. Todorova, Neda, 2017. "The intraday directional predictability of large Australian stocks: A cross-quantilogram analysis," Economic Modelling, Elsevier, vol. 64(C), pages 221-230.
    16. Fateh Habibi, 2015. "Iranian Tourism Demand for Malaysia: A Bound Test Approach," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 19(1), pages 63-80, Winter.
    17. Arif, Muhammad & Naeem, Muhammad Abubakr & Farid, Saqib & Nepal, Rabindra & Jamasb, Tooraj, 2022. "Diversifier or more? Hedge and safe haven properties of green bonds during COVID-19," Energy Policy, Elsevier, vol. 168(C).
    18. Ali, Sajid & Bouri, Elie & Czudaj, Robert Lukas & Shahzad, Syed Jawad Hussain, 2020. "Revisiting the valuable roles of commodities for international stock markets," Resources Policy, Elsevier, vol. 66(C).
    19. Axel Per Hedström & Gazi Salah Uddin & Md Lutfur Rahman & Bo Sjö, 2024. "Systemic risk in the Scandinavian banking sector," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 581-608, January.
    20. Law, Rob & Li, Gang & Fong, Davis Ka Chio & Han, Xin, 2019. "Tourism demand forecasting: A deep learning approach," Annals of Tourism Research, Elsevier, vol. 75(C), pages 410-423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3243-:d:346461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.