IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2268-d332380.html
   My bibliography  Save this article

Life Cycle Assessment of Nile Tilapia ( Oreochromis niloticus ) Farming in Kenyir Lake, Terengganu

Author

Listed:
  • Hayana Dullah

    (UNITEN R & D Sdn. Bhd. Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia)

  • M. A. Malek

    (Institute of Energy Policy and Research (IEPRe), Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia)

  • Marlia M. Hanafiah

    (Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaaan Malaysia, 43600 Bangi, Selangor, Malaysia
    Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaaan Malaysia, 43600 Bangi, Selangor, Malaysia)

Abstract

This study presents results from a life cycle assessment (LCA) conducted following the CML-IA method on caged aquaculture of Nile tilapia ( Oreochromis niloticus ) species at Como River, Kenyir Lake, Terengganu, Malaysia. In this study, the greenhouse gas (GHG) estimation, calculated based on the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines, showed that 245.27 C eq (1.69 Kg) of nitrate oxide (N 2 O) was emitted from the lake. The determination of LCA was conducted using several inputs, namely N 2 O, compositions of fish feed, materials used to build fish cages (infrastructure), main materials used during operation and several databases, namely Agri-footprint, Ecoinvent 3, European Reference Life-Cycle Database (ELCD), and Industry Data 2.0. The results show that feed formulation is the major contributor to potential environmental impact in aquaculture farming, at 55%, followed by infrastructure at 33% and operation at 12%. The feed formulation consisting of 53% broken rice contributed to marine ecotoxicity (MET), while those consisting of 44% fish meal and 33% soybean meal contributed to abiotic depletion (ABD) and global warming (GW), respectively. It is recommended that the percentage of ingredients used in feed formulation in fish farming are further studied to reduce its impacts to the environment.

Suggested Citation

  • Hayana Dullah & M. A. Malek & Marlia M. Hanafiah, 2020. "Life Cycle Assessment of Nile Tilapia ( Oreochromis niloticus ) Farming in Kenyir Lake, Terengganu," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2268-:d:332380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aziz, Nur Izzah Hamna A. & Hanafiah, Marlia M., 2020. "Life cycle analysis of biogas production from anaerobic digestion of palm oil mill effluent," Renewable Energy, Elsevier, vol. 145(C), pages 847-857.
    2. Gaspard Philis & Friederike Ziegler & Lars Christian Gansel & Mona Dverdal Jansen & Erik Olav Gracey & Anne Stene, 2019. "Comparing Life Cycle Assessment (LCA) of Salmonid Aquaculture Production Systems: Status and Perspectives," Sustainability, MDPI, vol. 11(9), pages 1-27, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesse Sherry & Jennifer Koester, 2020. "Life Cycle Assessment of Aquaculture Stewardship Council Certified Atlantic Salmon ( Salmo salar )," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    2. Baharuddin Haslawati & Ibrahim Saadiah & Razman Pahri Siti-Dina & Murnira Othman & Mohd Talib Latif, 2022. "Environmental Assessment of Giant Freshwater Prawn, Macrobrachium rosenbergii Farming through Life Cycle Assessment," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    3. Evangelos Kallitsis & Anna Korre & Dimitris Mousamas & Pavlos Avramidis, 2020. "Environmental Life Cycle Assessment of Mediterranean Sea Bass and Sea Bream," Sustainability, MDPI, vol. 12(22), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyi Liu & Feng Gui & Qian Zhou & Huiwen Cai & Kaida Xu & Sheng Zhao, 2023. "Carbon Footprint of a Large Yellow Croaker Mariculture Models Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    2. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    3. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    4. P.X.H. Bong & M.A. Malek & N.H. Mardi & Marlia M. Hanafiah, 2020. "Cradle-to-Gate Water-Related Impacts on Production of Traditional Food Products in Malaysia," Sustainability, MDPI, vol. 12(13), pages 1-19, June.
    5. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Gaspard Philis & Friederike Ziegler & Mona Dverdal Jansen & Lars Christian Gansel & Sara Hornborg & Grete Hansen Aas & Anne Stene, 2022. "Quantifying environmental impacts of cleaner fish used as sea lice treatments in salmon aquaculture with life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1992-2005, December.
    7. Giovanni Codotto & Massimo Pizzol & Troels J. Hegland & Niels Madsen, 2024. "Model uncertainty versus variability in the life cycle assessment of commercial fisheries," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 160-172, February.
    8. S. M. Shafie & Z. Othman & N. Hami & S. Omar & A. H. Nu'man & N. N.A.N. Yusoff & A. Shaf, 2020. "Biogas Fed-fuel Cell Based Electricity Generation: A Life Cycle Assessment Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 498-502.
    9. Pietro Goglio & Sander Van Den Burg & Katerina Kousoulaki & Maggie Skirtun & Åsa Maria Espmark & Anne Helena Kettunen & Wout Abbink, 2022. "The Environmental Impact of Partial Substitution of Fish-Based Feed with Algae- and Insect-Based Feed in Salmon Farming," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    10. Phuang, Zhen Xin & Woon, Kok Sin & Wong, Khai Jian & Liew, Peng Yen & Hanafiah, Marlia Mohd, 2021. "Unlocking the environmental hotspots of palm biodiesel upstream production in Malaysia via life cycle assessment," Energy, Elsevier, vol. 232(C).
    11. Friederike Ziegler & Sepideh Jafarzadeh & Erik Skontorp Hognes & Ulf Winther, 2022. "Greenhouse gas emissions of Norwegian seafoods: From comprehensive to simplified assessment," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1908-1919, December.
    12. Kelechi E. Anyaoha & Lulu Zhang, 2023. "Technology-based comparative life cycle assessment for palm oil industry: the case of Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4575-4595, May.
    13. Sharvini, S.R. & Noor, Z.Z. & Stringer, L.C. & Afionis, S. & Chong, C.S., 2022. "Energy generation from palm oil mill effluent: A life cycle cost-benefit analysis and policy insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. He Zhang & Ashish T. Asutosh & Junxue Zhang, 2022. "A quantitative sustainable comparative study of two biogas systems based on energy, emergy and entropy methods in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13583-13609, December.
    15. Haochen Hou & Anqi Ren & Lixingbo Yu & Zhen Ma & Yun Zhang & Ying Liu, 2023. "An Environmental Impact Assessment of Largemouth Bass ( Micropterus salmoides ) Aquaculture in Hangzhou, China," Sustainability, MDPI, vol. 15(16), pages 1-13, August.
    16. Evangelos Kallitsis & Anna Korre & Dimitris Mousamas & Pavlos Avramidis, 2020. "Environmental Life Cycle Assessment of Mediterranean Sea Bass and Sea Bream," Sustainability, MDPI, vol. 12(22), pages 1-11, November.
    17. Naquash, Ahmad & Qyyum, Muhammad Abdul & Haider, Junaid & Bokhari, Awais & Lim, Hankwon & Lee, Moonyong, 2022. "State-of-the-art assessment of cryogenic technologies for biogas upgrading: Energy, economic, and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2268-:d:332380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.