IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1455-d321130.html
   My bibliography  Save this article

The Potential and Trend of End-Of-Life Passenger Vehicles Recycling in China

Author

Listed:
  • Yang Li

    (School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China)

  • Kiyoshi Fujikawa

    (Applied Social System Institute of Asia, Nagoya University, Nagoya 4648601, Japan)

  • Junbo Wang

    (College of Management Science, Chengdu University of Technology, Chengdu 610051, China)

  • Xin Li

    (College of Management Science, Chengdu University of Technology, Chengdu 610051, China)

  • Yiyi Ju

    (Institute for Future Initiatives, The University of Tokyo, Tokyo 1130003, Japan)

  • Chenyi Chen

    (School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China)

Abstract

The contradiction between limited resources and rapid development in the automobile industry has been driving society to seek the supply of recyclable resources from End-of-Life Vehicles (ELVs). It has become an urgent need for vehicle recycling policymakers to have an overall understanding of the end-of-life (EoL) vehicle population, as well as for vehicle producers to note what and how they can benefit from ELV recycling. This paper estimated the potential population of EoL passenger vehicles, all recyclable resources from them, as well as the economic values of these recyclable resources. The results show that in 2030, with a lighter-weight trend of passenger vehicles, more than 26.3 million passenger vehicles will be retired with 19.1 million tons of recyclable steel and 6.2 million tons of plastics. The theoretical economic value of all recyclable resources will reach 101.3 billion yuan ($14.4 billion) in 2030, which is an average of approximately 2.4 thousand yuan ($341.8) for each EoL passenger vehicle. It is time for the vehicle producers to shift to a manufacturing mode considering such large potential of ELV recycling. The scenario analysis suggests that in the context of a light-weighting trend, ELV resource recovery in the future calls for improvement in the recycling and reuse technologies of plastics and rubbers.

Suggested Citation

  • Yang Li & Kiyoshi Fujikawa & Junbo Wang & Xin Li & Yiyi Ju & Chenyi Chen, 2020. "The Potential and Trend of End-Of-Life Passenger Vehicles Recycling in China," Sustainability, MDPI, vol. 12(4), pages 1-13, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1455-:d:321130
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1455/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1455/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zongguo Wen & Chenkai Zhang & Xiaoli Ji & Yanyan Xue, 2015. "Urban Mining's Potential to Relieve China's Coming Resource Crisis," Journal of Industrial Ecology, Yale University, vol. 19(6), pages 1091-1102, December.
    2. Muhammad Azmi & Akihiro Tokai, 2017. "Electric vehicle and end-of-life vehicle estimation in Malaysia 2040," Environment Systems and Decisions, Springer, vol. 37(4), pages 451-464, December.
    3. Wang, Minxi & Chen, Wu & Zhou, Yang & Li, Xin, 2017. "Assessment of potential copper scrap in China and policy recommendation," Resources Policy, Elsevier, vol. 52(C), pages 235-244.
    4. D'Adamo, Idiano & Gastaldi, Massimo & Rosa, Paolo, 2020. "Recycling of end-of-life vehicles: Assessing trends and performances in Europe," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    5. Yang Li & Lu Miao & Ying Chen & Yike Hu, 2019. "Exploration of Sustainable Urban Transportation Development in China through the Forecast of Private Vehicle Ownership," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    6. Huo, Hong & Wang, Michael, 2012. "Modeling future vehicle sales and stock in China," Energy Policy, Elsevier, vol. 43(C), pages 17-29.
    7. Flavius Ioan Rovinaru & Mihaela Daciana Rovinaru & Adina Viorica Rus, 2019. "The Economic and Ecological Impacts of Dismantling End-of-Life Vehicles in Romania," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    8. Peter H. Kobos & Jon D. Erickson & Thomas E. Drennen, 2003. "Scenario Analysis of Chinese Passenger Vehicle Growth," Contemporary Economic Policy, Western Economic Association International, vol. 21(2), pages 200-217, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Osawa, 2023. "Portfolio Analysis of Clean Energy Vehicles in Japan Considering Copper Recycling," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    2. Kai Rüdele & Matthias Wolf, 2023. "Identification and Reduction of Product Carbon Footprints: Case Studies from the Austrian Automotive Supplier Industry," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    3. Shimaa Al-Quradaghi & Qipeng P. Zheng & Alberto Betancourt-Torcat & Ali Elkamel, 2022. "Optimization Model for Sustainable End-of-Life Vehicle Processing and Recycling," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    4. Yang Li & Shiyu Huang & Yanhui Liu & Yiyi Ju, 2021. "Recycling Potential of Plastic Resources from End-of-Life Passenger Vehicles in China," IJERPH, MDPI, vol. 18(19), pages 1-15, September.
    5. Tulga Mendjargal & Eiji Yamasue & Hiroki Tanikawa, 2022. "Estimation of the Lifespan of Imported Passenger Vehicles in Mongolia," Sustainability, MDPI, vol. 14(21), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Altaf Hossain Molla & Hilal Shams & Zambri Harun & Mohd Nizam Ab Rahman & Hawa Hishamuddin, 2022. "An Assessment of Drivers and Barriers to Implementation of Circular Economy in the End-of-Life Vehicle Recycling Sector in India," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    2. Zambri Harun & Altaf Hossain Molla & Mohd Radzi Abu Mansor & Rozmi Ismail, 2022. "Development, Critical Evaluation, and Proposed Framework: End-of-Life Vehicle Recycling in India," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    3. Yu Gan & Zifeng Lu & Hao Cai & Michael Wang & Xin He & Steven Przesmitzki, 2020. "Future private car stock in China: current growth pattern and effects of car sales restriction," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 289-306, March.
    4. M. Yu. Ksenofontov & S. R. Milyakin, 2018. "The Automobilization Process and Its Determining Factors in the Past, Present, and Future," Studies on Russian Economic Development, Springer, vol. 29(4), pages 406-414, July.
    5. Yang Li & Shiyu Huang & Yanhui Liu & Yiyi Ju, 2021. "Recycling Potential of Plastic Resources from End-of-Life Passenger Vehicles in China," IJERPH, MDPI, vol. 18(19), pages 1-15, September.
    6. Vuk Petronijević & Aleksandar Đorđević & Miladin Stefanović & Slavko Arsovski & Zdravko Krivokapić & Milan Mišić, 2020. "Energy Recovery through End-of-Life Vehicles Recycling in Developing Countries," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    7. Zhang Yu & Syed Abdul Rehman Khan & Hafiz Muhammad Zia-ul-haq & Muhammad Tanveer & Muhammad Jawad Sajid & Shehzad Ahmed, 2022. "A Bibliometric Analysis of End-of-Life Vehicles Related Research: Exploring a Path to Environmental Sustainability," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    8. Faridzah Jamaluddin & Nizaroyani Saibani & Siti Maisarah Mohd Pisal & Dzuraidah Abd Wahab & Hawa Hishamuddin & Zainuddin Sajuri & Rasyikah Md Khalid, 2022. "End-of-Life Vehicle Management Systems in Major Automotive Production Bases in Southeast Asia: A Review," Sustainability, MDPI, vol. 14(21), pages 1-23, November.
    9. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
    10. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    11. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Ziru Feng & Tian Cai & Kangli Xiang & Chenxi Xiang & Lei Hou, 2019. "Evaluating the Impact of Fossil Fuel Vehicle Exit on the Oil Demand in China," Energies, MDPI, vol. 12(14), pages 1-18, July.
    13. Xiaowei Song & Yongpei Hao, 2019. "Vehicular Emission Inventory and Reduction Scenario Analysis in the Yangtze River Delta, China," IJERPH, MDPI, vol. 16(23), pages 1-21, November.
    14. Jeff Mangers & Meysam Minoufekr & Peter Plapper & Sri Kolla, 2021. "An Innovative Strategy Allowing a Holistic System Change towards Circular Economy within Supply-Chains," Energies, MDPI, vol. 14(14), pages 1-17, July.
    15. Hong Huo & Bo Zheng & Michael Wang & Qiang Zhang & Ke-Bin He, 2015. "Vehicular air pollutant emissions in China: evaluation of past control policies and future perspectives," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(5), pages 719-733, June.
    16. Philip Krummeck & Yagmur Damla Dokur & Daniel Braun & Steffen Kiemel & Robert Miehe, 2022. "Designing Component Interfaces for the Circular Economy—A Case Study for Product-As-A-Service Business Models in the Automotive Industry," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    17. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    18. Du, Huibin & Li, Qun & Liu, Xi & Peng, Binbin & Southworth, Frank, 2021. "Costs and potentials of reducing CO2 emissions in China's transport sector: Findings from an energy system analysis," Energy, Elsevier, vol. 234(C).
    19. Chun Jiang & Yi-Fan Wu & Xiao-Lin Li & Xin Li, 2020. "Time-frequency Connectedness between Coal Market Prices, New Energy Stock Prices and CO 2 Emissions Trading Prices in China," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    20. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1455-:d:321130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.