IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v25y2020i3d10.1007_s11027-019-09868-3.html
   My bibliography  Save this article

Future private car stock in China: current growth pattern and effects of car sales restriction

Author

Listed:
  • Yu Gan

    (Argonne National Laboratory)

  • Zifeng Lu

    (Argonne National Laboratory)

  • Hao Cai

    (Argonne National Laboratory)

  • Michael Wang

    (Argonne National Laboratory)

  • Xin He

    (Aramco Services Company)

  • Steven Przesmitzki

    (Aramco Services Company)

Abstract

Car stock projection is essential to evaluating the energy and environmental impacts of private cars in China. Since the private car ownership rate in China has not reached its saturation level, limited and outdated data used in previous studies has resulted in high uncertainties regarding the functions of car ownership and significantly reduced the robustness of the projection of private car stocks. In this work, we estimate China’s current growth pattern of private car ownership by analyzing more than 6300 pairs of private car ownership and income data collected from various official statistics at the national, provincial, and city levels in the period of 1997–2017. The dataset covers a much wider per-capita disposable income range than national-level data alone and allows us to make satisfactory projections of private car stocks in China up to 2040. We project that the private car stock in China could reach 403 million in 2040, if the current growth pattern of car ownership continues. Significant discrepancies in private car ownership curves are observed for cities with and without car sales restrictions. Without car sales restrictions, we estimate that the private car stock would be even higher at 455 million by 2040, demonstrating the effectiveness of the current restriction policy in controlling car stocks in China. We further quantify the potential impacts of car sales restrictions on future car stock levels by implementing hypothetical national car sales caps. Results show that, although the private car stocks would still continue to grow before 2030, the stock levels would be stable at ~ 280 and ~ 350 million by 2040 for scenarios of 20 and 25 million sales caps, respectively. The impact of private car stock growth on energy consumption in China is also examined. Pump-to-wheels energy consumption of the private car fleet is projected to be 131, 147, 90, and 113 million tonnes of oil equivalent by 2040 for scenarios of the current growth pattern, no sales restriction, the 20 million sales cap, and the 25 million sales cap, respectively. Analysis reveals that private car sales restriction and vehicle population growth control could be an effective strategy for energy consumption reduction (thus greenhouse gas emission mitigation) in China, although the development of the automotive industry may be restrained.

Suggested Citation

  • Yu Gan & Zifeng Lu & Hao Cai & Michael Wang & Xin He & Steven Przesmitzki, 2020. "Future private car stock in China: current growth pattern and effects of car sales restriction," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 289-306, March.
  • Handle: RePEc:spr:masfgc:v:25:y:2020:i:3:d:10.1007_s11027-019-09868-3
    DOI: 10.1007/s11027-019-09868-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-019-09868-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-019-09868-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiandong Chen & Fuqian Fang & Wenxuan Hou & Fengying Li & Ming Pu & Malin Song, 2015. "Chinese Gini Coefficient from 2005 to 2012, Based on 20 Grouped Income Data Sets of Urban and Rural Residents," Journal of Applied Mathematics, Hindawi, vol. 2015, pages 1-16, March.
    2. Gan, Yu & Griffin, W. Michael, 2018. "Analysis of life-cycle GHG emissions for iron ore mining and processing in China—Uncertainty and trends," Resources Policy, Elsevier, vol. 58(C), pages 90-96.
    3. Kahm, Matthias & Hasenbrink, Guido & Lichtenberg-Fraté, Hella & Ludwig, Jost & Kschischo, Maik, 2010. "grofit: Fitting Biological Growth Curves with R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i07).
    4. Peter H. Kobos & Jon D. Erickson & Thomas E. Drennen, 2003. "Scenario Analysis of Chinese Passenger Vehicle Growth," Contemporary Economic Policy, Western Economic Association International, vol. 21(2), pages 200-217, April.
    5. Hong Huo & Bo Zheng & Michael Wang & Qiang Zhang & Ke-Bin He, 2015. "Vehicular air pollutant emissions in China: evaluation of past control policies and future perspectives," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(5), pages 719-733, June.
    6. He, Kebin & Huo, Hong & Zhang, Qiang & He, Dongquan & An, Feng & Wang, Michael & Walsh, Michael P., 2005. "Oil consumption and CO2 emissions in China's road transport: current status, future trends, and policy implications," Energy Policy, Elsevier, vol. 33(12), pages 1499-1507, August.
    7. Huo, Hong & Wang, Michael & Zhang, Xiliang & He, Kebin & Gong, Huiming & Jiang, Kejun & Jin, Yuefu & Shi, Yaodong & Yu, Xin, 2012. "Projection of energy use and greenhouse gas emissions by motor vehicles in China: Policy options and impacts," Energy Policy, Elsevier, vol. 43(C), pages 37-48.
    8. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    9. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
    10. McDonald, James B & Ransom, Michael R, 1979. "Functional Forms, Estimation Techniques and the Distribution of Income," Econometrica, Econometric Society, vol. 47(6), pages 1513-1525, November.
    11. Huo, Hong & Wang, Michael, 2012. "Modeling future vehicle sales and stock in China," Energy Policy, Elsevier, vol. 43(C), pages 17-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiling Wang & Jiaxin Luo & Mengtian Zhang & Yue Ling, 2022. "The Impact of Transportation Restructuring on the Intensity of Greenhouse Gas Emissions: Empirical Data from China," IJERPH, MDPI, vol. 19(19), pages 1-16, October.
    2. Jiawei Hu & Eva Ayaragarnchanakul & Zheng Yang & Felix Creutzig, 2024. "Shared pooled mobility essential complement to decarbonize China’s transport sector until 2060," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(5), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    2. Zeng, Yuan & Tan, Xianchun & Gu, Baihe & Wang, Yi & Xu, Baoguang, 2016. "Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets," Applied Energy, Elsevier, vol. 184(C), pages 1016-1025.
    3. Liu, Yang & Wang, Yu & Huo, Hong, 2013. "Temporal and spatial variations in on-road energy use and CO2 emissions in China, 1978–2008," Energy Policy, Elsevier, vol. 61(C), pages 544-550.
    4. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    5. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    6. Li, Yi & Wang, Zhaohua & Wang, Ke & Zhang, Bin, 2021. "Fuel economy of Chinese light-duty car manufacturers: An efficiency analysis perspective," Energy, Elsevier, vol. 220(C).
    7. Yin, Xiang & Chen, Wenying & Eom, Jiyong & Clarke, Leon E. & Kim, Son H. & Patel, Pralit L. & Yu, Sha & Kyle, G. Page, 2015. "China's transportation energy consumption and CO2 emissions from a global perspective," Energy Policy, Elsevier, vol. 82(C), pages 233-248.
    8. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    9. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    10. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    11. Dorothée Boccanfuso & Bernard Decaluwé & Luc Savard, 2008. "Poverty, income distribution and CGE micro-simulation modeling: Does the functional form of distribution matter?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(2), pages 149-184, June.
    12. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    13. Fernández-Morales, Antonio, 2016. "Measuring poverty with the Foster, Greer and Thorbecke indexes based on the Gamma distribution," MPRA Paper 69648, University Library of Munich, Germany.
    14. Tian Wu & Mengbo Zhang & Xunmin Ou, 2014. "Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model," Energies, MDPI, vol. 7(11), pages 1-29, November.
    15. Sung Y. Park & Anil K. Bera, 2018. "Information theoretic approaches to income density estimation with an application to the U.S. income data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 461-486, December.
    16. Kazuhiko Kakamu, 2022. "Bayesian analysis of mixtures of lognormal distribution with an unknown number of components from grouped data," Papers 2210.05115, arXiv.org, revised Sep 2023.
    17. Dietmar Harhoff & Frederic M. Scherer & Katrin Vopel, 1997. "Exploring the Tail of Patented Invention Value Distributions," CIG Working Papers FS IV 97-27, Wissenschaftszentrum Berlin (WZB), Research Unit: Competition and Innovation (CIG).
    18. Christophe Muller, 2001. "The Properties of the Watts Poverty Index under Lognormality," Economics Bulletin, AccessEcon, vol. 9(1), pages 1-9.
    19. Lubrano, Michel & Ndoye, Abdoul Aziz Junior, 2016. "Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 830-846.
    20. Feng Zhu, 2005. "A nonparametric analysis of the shape dynamics of the US personal income distribution: 1962-2000," BIS Working Papers 184, Bank for International Settlements.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:25:y:2020:i:3:d:10.1007_s11027-019-09868-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.