IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v111y2019icp197-214.html
   My bibliography  Save this article

Survey on the social acceptance of the productive façade concept integrating photovoltaic and farming systems in high-rise public housing blocks in Singapore

Author

Listed:
  • Kosorić, Vesna
  • Huang, Huajing
  • Tablada, Abel
  • Lau, Siu-Kit
  • Tan, Hugh T.W.

Abstract

Productive façades (PFs) that integrate photovoltaic (PV) panels and vertical farming (VF) planters are designed to act as sustainable, multi-functional, modular building envelope systems. Singapore is the second most densely populated country in the world and its high-rise buildings play a critical role in the urban context offering a significantly larger surface area of walls than roofs. PFs represent an appropriate, novel technological response to a number of issues Singapore is facing such as a high dependence on imported energy and food, scarcity of land, planned reduction of greenhouse gases (GHGs) and the increase of high-rise greenery coverage. The potential of PFs in harvesting solar energy, which is currently the most viable renewable energy source (RES), and in utilizing the characteristics of the urban context, is promising. The study analyses the acceptance of the developed PF concept by its potential future users—residents of high-rise public housing blocks. A door-to-door survey was conducted among the residents of the Housing & Development Board (HDB) buildings (consisting of apartments or flats) with two main purposes: examining whether the residents accept or are positively inclined towards the PF concept and its implementation and secondly, identifying their preferences related to aesthetical qualities, use and maintenance of PF designs. The results indicate a highly affirmative response among a very high percentage of respondents towards gardening. They also indicate that PF concepts promoting small-scale VF adequately fit the needs of HDB residents. The preferences of the potential future users regarding PF types are further presented and discussed. The insights obtained will help further the knowledge on PFs and directly assist planners, architects, contractors and decision makers (DMs) as guidelines in the design of PFs in the tropics, enabling such systems to meet the needs, expectations and preferences of users and to address their concerns.

Suggested Citation

  • Kosorić, Vesna & Huang, Huajing & Tablada, Abel & Lau, Siu-Kit & Tan, Hugh T.W., 2019. "Survey on the social acceptance of the productive façade concept integrating photovoltaic and farming systems in high-rise public housing blocks in Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 197-214.
  • Handle: RePEc:eee:rensus:v:111:y:2019:i:c:p:197-214
    DOI: 10.1016/j.rser.2019.04.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119302680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.04.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kathrin Specht & Rosemarie Siebert & Susanne Thomaier & Ulf B. Freisinger & Magdalena Sawicka & Axel Dierich & Dietrich Henckel & Maria Busse, 2015. "Zero-Acreage Farming in the City of Berlin: An Aggregated Stakeholder Perspective on Potential Benefits and Challenges," Sustainability, MDPI, vol. 7(4), pages 1-13, April.
    2. Hachem, Caroline & Athienitis, Andreas & Fazio, Paul, 2014. "Energy performance enhancement in multistory residential buildings," Applied Energy, Elsevier, vol. 116(C), pages 9-19.
    3. Abel Tablada & Vesna Kosorić & Huajing Huang & Ian Kevin Chaplin & Siu-Kit Lau & Chao Yuan & Stephen Siu-Yu Lau, 2018. "Design Optimization of Productive Façades: Integrating Photovoltaic and Farming Systems at the Tropical Technologies Laboratory," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    4. Saber, Esmail M. & Lee, Siew Eang & Manthapuri, Sumanth & Yi, Wang & Deb, Chirag, 2014. "PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings," Energy, Elsevier, vol. 71(C), pages 588-595.
    5. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena & Braga, Ana Cristina, 2014. "Public opinion on renewable energy technologies in Portugal," Energy, Elsevier, vol. 69(C), pages 39-50.
    6. Brito, M.C. & Freitas, S. & Guimarães, S. & Catita, C. & Redweik, P., 2017. "The importance of facades for the solar PV potential of a Mediterranean city using LiDAR data," Renewable Energy, Elsevier, vol. 111(C), pages 85-94.
    7. Fatemeh KALANTARI & Osman Mohd TAHIR & Rahele AKBARI JONI & Nur Azemah AMINULDIN, 2018. "The Importance Of The Public Acceptance Theory In Determining The Success Of The Vertical Farming Projects," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 10(1), pages 5-16, March.
    8. Zhao, Dong-Xue & He, Bao-Jie & Johnson, Christine & Mou, Ben, 2015. "Social problems of green buildings: From the humanistic needs to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1594-1609.
    9. Zoellner, Jan & Schweizer-Ries, Petra & Wemheuer, Christin, 2008. "Public acceptance of renewable energies: Results from case studies in Germany," Energy Policy, Elsevier, vol. 36(11), pages 4136-4141, November.
    10. Erbil, Aslı Öğüt, 2011. "Social acceptance of the clean energy concept: Exploring the clean energy understanding of Istanbul residents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4498-4506.
    11. Kathrin Specht & Rosemarie Siebert & Ina Hartmann & Ulf Freisinger & Magdalena Sawicka & Armin Werner & Susanne Thomaier & Dietrich Henckel & Heike Walk & Axel Dierich, 2014. "Urban agriculture of the future: an overview of sustainability aspects of food production in and on buildings," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 31(1), pages 33-51, March.
    12. Felicia Huppert & Timothy So, 2013. "Erratum to: Flourishing Across Europe: Application of a New Conceptual Framework for Defining Well-Being," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 110(3), pages 1245-1246, February.
    13. Megan Horst & Nathan McClintock & Lesli Hoey, 2017. "The Intersection of Planning, Urban Agriculture, and Food Justice: A Review of the Literature," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(3), pages 277-295, July.
    14. Bonde, Magnus & Ramirez, Jill, 2015. "A Post Occupancy Evaluation of a green rated and conventional residence hall," Working Paper Series 15/6, Royal Institute of Technology, Department of Real Estate and Construction Management & Banking and Finance.
    15. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    16. Kathrin Specht & Rosemarie Siebert & Susanne Thomaier, 2016. "Perception and acceptance of agricultural production in and on urban buildings (ZFarming): a qualitative study from Berlin, Germany," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 33(4), pages 753-769, December.
    17. Martina Artmann & Katharina Sartison, 2018. "The Role of Urban Agriculture as a Nature-Based Solution: A Review for Developing a Systemic Assessment Framework," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    18. Mahbubur Meenar & Alfonso Morales & Leonard Bonarek, 2017. "Regulatory Practices of Urban Agriculture: A Connection to Planning and Policy," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(4), pages 389-403, October.
    19. Kosorić, Vesna & Lau, Siu-Kit & Tablada, Abel & Lau, Stephen Siu-Yu, 2018. "General model of Photovoltaic (PV) integration into existing public high-rise residential buildings in Singapore – Challenges and benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 70-89.
    20. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    21. Zhang, Weilong & Lu, Lin & Peng, Jinqing, 2017. "Evaluation of potential benefits of solar photovoltaic shadings in Hong Kong," Energy, Elsevier, vol. 137(C), pages 1152-1158.
    22. Felicia Huppert & Timothy So, 2013. "Flourishing Across Europe: Application of a New Conceptual Framework for Defining Well-Being," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 110(3), pages 837-861, February.
    23. Karlstrøm, Henrik & Ryghaug, Marianne, 2014. "Public attitudes towards renewable energy technologies in Norway. The role of party preferences," Energy Policy, Elsevier, vol. 67(C), pages 656-663.
    24. Yuan, Xueliang & Zuo, Jian & Ma, Chunyuan, 2011. "Social acceptance of solar energy technologies in China--End users' perspective," Energy Policy, Elsevier, vol. 39(3), pages 1031-1036, March.
    25. Mohajeri, Nahid & Upadhyay, Govinda & Gudmundsson, Agust & Assouline, Dan & Kämpf, Jérôme & Scartezzini, Jean-Louis, 2016. "Effects of urban compactness on solar energy potential," Renewable Energy, Elsevier, vol. 93(C), pages 469-482.
    26. Jayathissa, P. & Luzzatto, M. & Schmidli, J. & Hofer, J. & Nagy, Z. & Schlueter, A., 2017. "Optimising building net energy demand with dynamic BIPV shading," Applied Energy, Elsevier, vol. 202(C), pages 726-735.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    2. López-Escalante, M.C. & Navarrete-Astorga, E. & Gabás Perez, M. & Ramos- Barrado, J.R. & Martín, F., 2020. "Photovoltaic modules designed for architectural integration without negative performance consequences," Applied Energy, Elsevier, vol. 279(C).
    3. Youhanna E. William & Hui An & Szu-Cheng Chien & Chew Beng Soh & Barbara Ting Wei Ang & Toshikazu Ishida & Hikaru Kobayashi & David Tan & Ryan Hong Soon Tay, 2022. "Urban-Metabolic Farming Modules on Rooftops for Eco-Resilient Farmscape," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    4. Richards, D.R. & Law, A. & Tan, C.S.Y. & Shaikh, S.F.E.A. & Carrasco, L.R. & Jaung, W. & Oh, R.R.Y., 2020. "Rapid urbanisation in Singapore causes a shift from local provisioning and regulating to cultural ecosystem services use," Ecosystem Services, Elsevier, vol. 46(C).
    5. Siu-Kit Lau & Vesna Kosorić & Monika Bieri & André.M. Nobre, 2021. "Identification of Factors Influencing Development of Photovoltaic (PV) Implementation in Singapore," Sustainability, MDPI, vol. 13(5), pages 1-30, March.
    6. Arias-Rosales, Andrés & LeDuc, Philip R., 2023. "Urban solar harvesting: The importance of diffuse shadows in complex environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    7. Li, Peixian & Ng, Jeremy & Lu, Yujie, 2022. "Accelerating the adoption of renewable energy certificate: Insights from a survey of corporate renewable procurement in Singapore," Renewable Energy, Elsevier, vol. 199(C), pages 1272-1282.
    8. Hemeng Zhou & Kathrin Specht & Caitlin K. Kirby, 2022. "Consumers’ and Stakeholders’ Acceptance of Indoor Agritecture in Shanghai (China)," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    9. Marzouk, Mai A. & Salheen, Mohamed A. & Fischer, Leonie K., 2024. "Towards sustainable urbanization in new cities: Social acceptance and preferences of agricultural and solar energy systems," Technology in Society, Elsevier, vol. 77(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abel Tablada & Vesna Kosorić & Huajing Huang & Ian Kevin Chaplin & Siu-Kit Lau & Chao Yuan & Stephen Siu-Yu Lau, 2018. "Design Optimization of Productive Façades: Integrating Photovoltaic and Farming Systems at the Tropical Technologies Laboratory," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    2. Vesna Kosorić & Siu-Kit Lau & Abel Tablada & Monika Bieri & André M. Nobre, 2021. "A Holistic Strategy for Successful Photovoltaic (PV) Implementation into Singapore’s Built Environment," Sustainability, MDPI, vol. 13(11), pages 1-35, June.
    3. Kosorić, Vesna & Lau, Siu-Kit & Tablada, Abel & Lau, Stephen Siu-Yu, 2018. "General model of Photovoltaic (PV) integration into existing public high-rise residential buildings in Singapore – Challenges and benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 70-89.
    4. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava, 2018. "Social acceptance of green energy determinants using principal component analysis," Energy, Elsevier, vol. 160(C), pages 1030-1046.
    5. Yu, H. & Reiner, D. & Chen, H. & Mi, Z., 2018. "A comparison of public preferences for different low-carbon energy technologies: Support for CCS, nuclear and wind energy in the United Kingdom," Cambridge Working Papers in Economics 1826, Faculty of Economics, University of Cambridge.
    6. Busse, Maria & Siebert, Rosemarie, 2018. "Acceptance studies in the field of land use—A critical and systematic review to advance the conceptualization of acceptance and acceptability," Land Use Policy, Elsevier, vol. 76(C), pages 235-245.
    7. Heras-Saizarbitoria, Iñaki & Zamanillo, Ibon & Laskurain, Iker, 2013. "Social acceptance of ocean wave energy: A case study of an OWC shoreline plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 515-524.
    8. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    9. Muhammad Mumtaz Khan & Muhammad Tahir Akram & Rhonda Janke & Rashad Waseem Khan Qadri & Abdullah Mohammed Al-Sadi & Aitazaz A. Farooque, 2020. "Urban Horticulture for Food Secure Cities through and beyond COVID-19," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    10. Mireia Ercilla-Montserrat & David Sanjuan-Delmás & Esther Sanyé-Mengual & Laura Calvet-Mir & Karla Banderas & Joan Rieradevall & Xavier Gabarrell, 2019. "Analysis of the consumer’s perception of urban food products from a soilless system in rooftop greenhouses: a case study from the Mediterranean area of Barcelona (Spain)," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 36(3), pages 375-393, September.
    11. Kathrin Specht & Rosemarie Siebert & Susanne Thomaier, 2016. "Perception and acceptance of agricultural production in and on urban buildings (ZFarming): a qualitative study from Berlin, Germany," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 33(4), pages 753-769, December.
    12. Mahesti Okitasari & Ranjeeta Mishra & Masachika Suzuki, 2022. "Socio-Economic Drivers of Community Acceptance of Sustainable Social Housing: Evidence from Mumbai," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    13. Zhao, Dong-Xue & He, Bao-Jie & Johnson, Christine & Mou, Ben, 2015. "Social problems of green buildings: From the humanistic needs to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1594-1609.
    14. Ana María González & Harrison Sandoval & Pilar Acosta & Felipe Henao, 2016. "On the Acceptance and Sustainability of Renewable Energy Projects—A Systems Thinking Perspective," Sustainability, MDPI, vol. 8(11), pages 1-21, November.
    15. Marco Segreto & Lucas Principe & Alexandra Desormeaux & Marco Torre & Laura Tomassetti & Patrizio Tratzi & Valerio Paolini & Francesco Petracchini, 2020. "Trends in Social Acceptance of Renewable Energy Across Europe—A Literature Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    16. Galjak, Marko & Budić, Marina, 2024. "Public perceptions of fossil and alternative energy in Serbia: Between NIMBYism and nationalism," Energy Policy, Elsevier, vol. 190(C).
    17. Aklin, Michaël & Cheng, Chao-Yo & Urpelainen, Johannes, 2018. "Social acceptance of new energy technology in developing countries: A framing experiment in rural India," Energy Policy, Elsevier, vol. 113(C), pages 466-477.
    18. van Rijnsoever, Frank J. & Farla, Jacco C.M., 2014. "Identifying and explaining public preferences for the attributes of energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 71-82.
    19. Sunčana Slijepčević & Željka Kordej-De Villa, 2021. "Public Attitudes toward Renewable Energy in Croatia," Energies, MDPI, vol. 14(23), pages 1-17, December.
    20. Spielhofer, R. & Thrash, T. & Hayek, U. Wissen & Grêt-Regamey, A. & Salak, B. & Grübel, J. & Schinazi, V.R., 2021. "Physiological and behavioral reactions to renewable energy systems in various landscape types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:111:y:2019:i:c:p:197-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.