IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9600-d446880.html
   My bibliography  Save this article

Drainage Ditch Berm Delineation Using Lidar Data: A Case Study of Waseca County, Minnesota

Author

Listed:
  • Jonathan Graves

    (Property & Environmental Resources, Blue Earth County, MN 56001, USA)

  • Rama Mohapatra

    (Department of Geography, Minnesota State University, Mankato, MN 56001, USA)

  • Nicholas Flatgard

    (Geographic Information Systems, Steele County, MN 55060, USA)

Abstract

Within a drainage system, drainage ditches are designed to improve existing natural drainage. Although drainage ditches are mostly engineered, they can also be part of natural watercourses. For environmental sustainability, in many places there are guidelines to establish vegetative buffer strips along the boundary of drainage ditches. In this landscape planning study, a geospatial modeling framework was established to identify these drainage system landforms and the boundary that separates these landforms from their surrounding areas across Waseca County in south-central Minnesota. By employing almost 2000 GPS spot elevation measurements from five ditch systems and one-meter Light Detection and Ranging (LiDAR) derived digital elevation model (DEM) data, the drainage ditch berm polygons were delineated. Eight low light angle hillshade rasters at 45-degree azimuth intervals were used to construct the model. These hillshade rasters were combined to form a composite raster so that the effect of multiple azimuths can be captured during ditch berm delineation. The GPS points identified as the top of the berm were used to extract cell values from the combined hillshade. These cell values were modeled further using statistical distribution graphs. The statistical model derived +0.5 and +1 standard deviation values (cell values 812 and 827, respectively) of the combined hillshade raster were utilized to obtain complete berm polygons. In this semi-automated method, between 67.30% to 79.80% of ditch berm lengths were mapped with an average error that is less than the resolution of the DEM. Demarcation of these boundaries are important for local governments in Minnesota and throughout the world, as it could help guide land–water management and aid sustainable agriculture.

Suggested Citation

  • Jonathan Graves & Rama Mohapatra & Nicholas Flatgard, 2020. "Drainage Ditch Berm Delineation Using Lidar Data: A Case Study of Waseca County, Minnesota," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9600-:d:446880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9600/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9600/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heimlich, Ralph E. & Wiebe, Keith D. & Claassen, Roger & Gadsby, Dwight M. & House, Robert M., 1998. "Wetlands and Agriculture: Private Interests and Public Benefits," Agricultural Economic Reports 34043, United States Department of Agriculture, Economic Research Service.
    2. Claassen, Roger & Cattaneo, Andrea & Johansson, Robert, 2008. "Cost-effective design of agri-environmental payment programs: U.S. experience in theory and practice," Ecological Economics, Elsevier, vol. 65(4), pages 737-752, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kangas, Johanna & Ollikainen, Markku, 2022. "A PES scheme promoting forest biodiversity and carbon sequestration," Forest Policy and Economics, Elsevier, vol. 136(C).
    2. Ribaudo, Marc O. & Heimlich, Ralph & Claassen, Roger & Peters, Mark, 2001. "Least-cost management of nonpoint source pollution: source reduction versus interception strategies for controlling nitrogen loss in the Mississippi Basin," Ecological Economics, Elsevier, vol. 37(2), pages 183-197, May.
    3. Cloé Garnache & Scott M. Swinton & Joseph A. Herriges & Frank Lupi & R. Jan Stevenson, 2016. "Solving the Phosphorus Pollution Puzzle: Synthesis and Directions for Future Research," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(5), pages 1334-1359.
    4. Soh, Moonwon & Cho, Seong-Hoon & Yu, Edward & Boyer, Christopher & English, Burton, 2018. "Targeting Payments for Ecosystem Services Given Ecological and Economic Objectives," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266502, Southern Agricultural Economics Association.
    5. KURKALOVA, Lyubov A. & WADE, Tara R., 2013. "Aggregated Choice Data And Logit Models: Application To Environmental Benign Practices Of Conservation Tillage By Farmers In The State Of Iowa," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 13(2), pages 119-128.
    6. Author-Name: Luca Di Corato & Cesare Dosi & Michele Moretto, 2014. "Bidding for Conservation Contracts," Working Papers 2014.65, Fondazione Eni Enrico Mattei.
    7. Skidmore, Samuel & Santos, Paulo & Leimona, Beria, 2012. "Seeing REDD: A Microeconomic Analysis of Carbon Sequestration in Indonesia," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126688, International Association of Agricultural Economists.
    8. Cho, Seong-Hoon & Soh, Moonwon & English, Burton C. & Yu, T. Edward & Boyer, Christopher N., 2019. "Targeting payments for forest carbon sequestration given ecological and economic objectives," Forest Policy and Economics, Elsevier, vol. 100(C), pages 214-226.
    9. Zhang, Qi & Bilsborrow, Richard E. & Song, Conghe & Tao, Shiqi & Huang, Qingfeng, 2019. "Rural household income distribution and inequality in China: Effects of payments for ecosystem services policies and other factors," Ecological Economics, Elsevier, vol. 160(C), pages 114-127.
    10. Zhang, Jing & Brown, Colin & Qiao, Guanghua & Zhang, Bao, 2019. "Effect of Eco-compensation Schemes on Household Income Structures and Herder Satisfaction: Lessons From the Grassland Ecosystem Subsidy and Award Scheme in Inner Mongolia," Ecological Economics, Elsevier, vol. 159(C), pages 46-53.
    11. Ina, Porras & Bruce, Alyward & Jeff, Dengel, 2013. "Monitoring payments for watershed services schemes in developing countries," MPRA Paper 47185, University Library of Munich, Germany.
    12. Börner, Jan & Wunder, Sven & Wertz-Kanounnikoff, Sheila & Tito, Marcos Rügnitz & Pereira, Ligia & Nascimento, Nathalia, 2010. "Direct conservation payments in the Brazilian Amazon: Scope and equity implications," Ecological Economics, Elsevier, vol. 69(6), pages 1272-1282, April.
    13. Whitten, Stuart M., 2017. "Designing and implementing conservation tender metrics: Twelve core considerations," Land Use Policy, Elsevier, vol. 63(C), pages 561-571.
    14. Charles A. Taylor & Hannah Druckenmiller, 2022. "Wetlands, Flooding, and the Clean Water Act," American Economic Review, American Economic Association, vol. 112(4), pages 1334-1363, April.
    15. Pratt, Bryan & Wallander, Steven, 2022. "Cover Practice Definitions and Incentives in the Conservation Reserve Program," Economic Information Bulletin 327358, United States Department of Agriculture, Economic Research Service.
    16. Markus Groth, 2009. "The transferability and performance of payment-by-results biodiversity conservation procurement auctions: empirical evidence from northernmost Germany," Working Paper Series in Economics 119, University of Lüneburg, Institute of Economics.
    17. Hualin Xie & Lingjuan Cheng & Tiangui Lv, 2017. "Factors Influencing Farmer Willingness to Fallow Winter Wheat and Ecological Compensation Standards in a Groundwater Funnel Area in Hengshui, Hebei Province, China," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    18. Driss Ezzine-de-Blas & Sven Wunder & Manuel Ruiz-Pérez & Rocio del Pilar Moreno-Sanchez, 2016. "Global Patterns in the Implementation of Payments for Environmental Services," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-16, March.
    19. Jacob R. Fooks & Kent D. Messer & Joshua M. Duke, 2015. "Dynamic Entry, Reverse Auctions, and the Purchase of Environmental Services," Land Economics, University of Wisconsin Press, vol. 91(1), pages 57-75.
    20. Patrick Baur, 2020. "When farmers are pulled in too many directions: comparing institutional drivers of food safety and environmental sustainability in California agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(4), pages 1175-1194, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9600-:d:446880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.