IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p565-d96350.html
   My bibliography  Save this article

Simultaneous Robust Coordinated Damping Control of Power System Stabilizers (PSSs), Static Var Compensator (SVC) and Doubly-Fed Induction Generator Power Oscillation Dampers (DFIG PODs) in Multimachine Power Systems

Author

Listed:
  • Jian Zuo

    (School of Electrical and Electronic Engineering, State Key Laboratory of Advanced Electromagnetic, Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yinhong Li

    (School of Electrical and Electronic Engineering, State Key Laboratory of Advanced Electromagnetic, Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Dongyuan Shi

    (School of Electrical and Electronic Engineering, State Key Laboratory of Advanced Electromagnetic, Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Xianzhong Duan

    (School of Electrical and Electronic Engineering, State Key Laboratory of Advanced Electromagnetic, Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

The potential of utilizing doubly-fed induction generator (DFIG)-based wind farms to improve power system damping performance and to enhance small signal stability has been proposed by many researchers. However, the simultaneous coordinated tuning of a DFIG power oscillation damper (POD) with other damping controllers is rarely involved. A simultaneous robust coordinated multiple damping controller design strategy for a power system incorporating power system stabilizer (PSS), static var compensator (SVC) POD and DFIG POD is presented in this paper. This coordinated damping control design strategy is addressed as an eigenvalue-based optimization problem to increase the damping ratios of oscillation modes. Both local and inter-area electromechanical oscillation modes are intended in the optimization design process. Wide-area phasor measurement unit (PMU) signals, selected by the joint modal controllability/ observability index, are utilized as SVC and DFIG POD feedback modulation signals to suppress inter-area oscillation modes. The robustness of the proposed coordinated design strategy is achieved by simultaneously considering multiple power flow situations and operating conditions. The recently proposed Grey Wolf optimizer (GWO) algorithm is adopted to efficiently optimize the parameter values of multiple damping controllers. The feasibility and effectiveness of the proposed coordinated design strategy are demonstrated through frequency-domain eigenvalue analysis and nonlinear time-domain simulation studies in two modified benchmark test systems. Moreover, the dynamic response simulation results also validate the robustness of the recommended coordinated multiple damping controllers under various system operating conditions.

Suggested Citation

  • Jian Zuo & Yinhong Li & Dongyuan Shi & Xianzhong Duan, 2017. "Simultaneous Robust Coordinated Damping Control of Power System Stabilizers (PSSs), Static Var Compensator (SVC) and Doubly-Fed Induction Generator Power Oscillation Dampers (DFIG PODs) in Multimachin," Energies, MDPI, vol. 10(4), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:565-:d:96350
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muthana Alrifai & Mohamed Zribi & Mohamed Rayan, 2016. "Feedback Linearization Controller for a Wind Energy Power System," Energies, MDPI, vol. 9(10), pages 1-23, September.
    2. Aiguo Tan & Xiangning Lin & Jinwen Sun & Ran Lyu & Zhengtian Li & Long Peng & Muhammad Shoaib Khalid, 2016. "A Novel DFIG Damping Control for Power System with High Wind Power Penetration," Energies, MDPI, vol. 9(7), pages 1-15, July.
    3. Wenying Liu & Rundong Ge & Quancheng Lv & Huiyong Li & Jiangbei Ge, 2015. "Research on a Small Signal Stability Region Boundary Model of the Interconnected Power System with Large-Scale Wind Power," Energies, MDPI, vol. 8(4), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming Yang & Wu Cao & Tingjun Lin & Jianfeng Zhao & Wei Li, 2021. "Low Frequency Damping Control for Power Electronics-Based AC Grid Using Inverters with Built-In PSS," Energies, MDPI, vol. 14(9), pages 1-18, April.
    2. Francesco Bonavolontà & Luigi Pio Di Noia & Davide Lauria & Annalisa Liccardo & Salvatore Tessitore, 2019. "An Optimized HT-Based Method for the Analysis of Inter-Area Oscillations on Electrical Systems," Energies, MDPI, vol. 12(15), pages 1-22, July.
    3. Jun Dong & Shengnan Li & Shuijun Wu & Tingyi He & Bo Yang & Hongchun Shu & Jilai Yu, 2017. "Nonlinear Observer-Based Robust Passive Control of Doubly-Fed Induction Generators for Power System Stability Enhancement via Energy Reshaping," Energies, MDPI, vol. 10(8), pages 1-16, July.
    4. Ping He & Seyed Ali Arefifar & Congshan Li & Fushuan Wen & Yuqi Ji & Yukun Tao, 2019. "Enhancing Oscillation Damping in an Interconnected Power System with Integrated Wind Farms Using Unified Power Flow Controller," Energies, MDPI, vol. 12(2), pages 1-16, January.
    5. Abdul Waheed Khawaja & Nor Azwan Mohamed Kamari & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Design of a Damping Controller Using the SCA Optimization Technique for the Improvement of Small Signal Stability of a Single Machine Connected to an Infinite Bus System," Energies, MDPI, vol. 14(11), pages 1-20, May.
    6. Aliyu Sabo & Noor Izzri Abdul Wahab & Mohammad Lutfi Othman & Mai Zurwatul Ahlam Mohd Jaffar & Hakan Acikgoz & Hamzeh Beiranvand, 2020. "Application of Neuro-Fuzzy Controller to Replace SMIB and Interconnected Multi-Machine Power System Stabilizers," Sustainability, MDPI, vol. 12(22), pages 1-42, November.
    7. Vijay Mohale & Thanga Raj Chelliah, 2022. "Impact of Fixed/Variable Speed Hydro, Wind, and Photovoltaic on Sub-Synchronous Torsional Oscillation—A Review," Sustainability, MDPI, vol. 15(1), pages 1-28, December.
    8. Solomon Feleke & Raavi Satish & Balamurali Pydi & Degarege Anteneh & Almoataz Y. Abdelaziz & Adel El-Shahat, 2023. "Damping of Frequency and Power System Oscillations with DFIG Wind Turbine and DE Optimization," Sustainability, MDPI, vol. 15(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingtuan Gao & Chaopeng Xia & Ning Chen & Khalid Mehmood Cheema & Libin Yang & Chunlai Li, 2017. "Virtual Synchronous Generator Based Auxiliary Damping Control Design for the Power System with Renewable Generation," Energies, MDPI, vol. 10(8), pages 1-21, August.
    2. Mohamed Zribi & Muthana Alrifai & Mohamed Rayan, 2017. "Sliding Mode Control of a Variable- Speed Wind Energy Conversion System Using a Squirrel Cage Induction Generator," Energies, MDPI, vol. 10(5), pages 1-21, May.
    3. Khaled Alshuaibi & Yi Zhao & Lin Zhu & Evangelos Farantatos & Deepak Ramasubramanian & Wenpeng Yu & Yilu Liu, 2022. "Forced Oscillation Grid Vulnerability Analysis and Mitigation Using Inverter-Based Resources: Texas Grid Case Study," Energies, MDPI, vol. 15(8), pages 1-13, April.
    4. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Panapakidis, Ioannis P., 2017. "Impact of the penetration of renewables on flexibility needs," Energy Policy, Elsevier, vol. 109(C), pages 360-369.
    5. Ping He & Seyed Ali Arefifar & Congshan Li & Fushuan Wen & Yuqi Ji & Yukun Tao, 2019. "Enhancing Oscillation Damping in an Interconnected Power System with Integrated Wind Farms Using Unified Power Flow Controller," Energies, MDPI, vol. 12(2), pages 1-16, January.
    6. Jun Dong & Shengnan Li & Shuijun Wu & Tingyi He & Bo Yang & Hongchun Shu & Jilai Yu, 2017. "Nonlinear Observer-Based Robust Passive Control of Doubly-Fed Induction Generators for Power System Stability Enhancement via Energy Reshaping," Energies, MDPI, vol. 10(8), pages 1-16, July.
    7. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Li, Xin & Chong, Daotong & Yan, Junjie, 2018. "Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes," Applied Energy, Elsevier, vol. 228(C), pages 2375-2386.
    8. Walter Gil-González & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Alberto-Jesus Perea-Moreno & Quetzalcoatl Hernandez-Escobedo, 2020. "Optimal Placement and Sizing of Wind Generators in AC Grids Considering Reactive Power Capability and Wind Speed Curves," Sustainability, MDPI, vol. 12(7), pages 1-20, April.
    9. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    10. Solomon Feleke & Raavi Satish & Balamurali Pydi & Degarege Anteneh & Almoataz Y. Abdelaziz & Adel El-Shahat, 2023. "Damping of Frequency and Power System Oscillations with DFIG Wind Turbine and DE Optimization," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    11. Perez, Alex & Garcia-Rendon, John J., 2021. "Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia," Renewable Energy, Elsevier, vol. 167(C), pages 146-161.
    12. Paul Stewart & Chris Bingham, 2016. "Electrical Power and Energy Systems for Transportation Applications," Energies, MDPI, vol. 9(7), pages 1-3, July.
    13. Wuhui Chen & Zaixing Teng & Junhua Zhao & Jing Qiu, 2018. "Small-Signal Performance of Type 4 Wind Turbine Generator-Based Clusters in Power Systems," Energies, MDPI, vol. 11(6), pages 1-16, June.
    14. Rundong Ge & Wenying Liu & Huiyong Li & Jianzong Zhuo & Weizhou Wang, 2015. "Research on the Multi-Period Small-Signal Stability Probability of a Power System with Wind Farms Based on the Markov Chain," Sustainability, MDPI, vol. 7(4), pages 1-18, April.
    15. Rui Quan & Wenxia Pan, 2017. "A Low-Order System Frequency Response Model for DFIG Distributed Wind Power Generation Systems Based on Small Signal Analysis," Energies, MDPI, vol. 10(5), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:565-:d:96350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.