IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1082-d105795.html
   My bibliography  Save this article

Nonlinear Observer-Based Robust Passive Control of Doubly-Fed Induction Generators for Power System Stability Enhancement via Energy Reshaping

Author

Listed:
  • Jun Dong

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

  • Shengnan Li

    (Electric Power Research Institute of Yunnan Power Grid Co., Ltd., Kunming 650217, China)

  • Shuijun Wu

    (Electric Power Research Institute of Yunnan Power Grid Co., Ltd., Kunming 650217, China)

  • Tingyi He

    (Electric Power Research Institute of Yunnan Power Grid Co., Ltd., Kunming 650217, China)

  • Bo Yang

    (Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China)

  • Hongchun Shu

    (Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China)

  • Jilai Yu

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China)

Abstract

The large-scale penetration of wind power might lead to degradation of the power system stability due to its inherent feature of randomness. Hence, proper control designs which can effectively handle various uncertainties become very crucial. This paper designs a novel robust passive control (RPC) scheme of a doubly-fed induction generator (DFIG) for power system stability enhancement. The combinatorial effect of generator nonlinearities and parameter uncertainties, unmodelled dynamics, wind speed randomness, is aggregated into a perturbation, which is rapidly estimated by a nonlinear extended state observer (ESO) in real-time. Then, the perturbation estimate is fully compensated by a robust passive controller to realize a globally consistent control performance, in which the energy of the closed-loop system is carefully reshaped through output feedback passification, such that a considerable system damping can be injected to improve the transient responses of DFIG in various operation conditions of power systems. Six case studies are carried out while simulation results verify that RPC can rapidly stabilize the disturbed DFIG system much faster with less overshoot, as well as supress power oscillations more effectively compared to that of linear proportional-integral-derivative (PID) control and nonlinear feedback linearization control (FLC).

Suggested Citation

  • Jun Dong & Shengnan Li & Shuijun Wu & Tingyi He & Bo Yang & Hongchun Shu & Jilai Yu, 2017. "Nonlinear Observer-Based Robust Passive Control of Doubly-Fed Induction Generators for Power System Stability Enhancement via Energy Reshaping," Energies, MDPI, vol. 10(8), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1082-:d:105795
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1082/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aiguo Tan & Xiangning Lin & Jinwen Sun & Ran Lyu & Zhengtian Li & Long Peng & Muhammad Shoaib Khalid, 2016. "A Novel DFIG Damping Control for Power System with High Wind Power Penetration," Energies, MDPI, vol. 9(7), pages 1-15, July.
    2. Jian Zuo & Yinhong Li & Dongyuan Shi & Xianzhong Duan, 2017. "Simultaneous Robust Coordinated Damping Control of Power System Stabilizers (PSSs), Static Var Compensator (SVC) and Doubly-Fed Induction Generator Power Oscillation Dampers (DFIG PODs) in Multimachin," Energies, MDPI, vol. 10(4), pages 1-23, April.
    3. Ahmad Bashar Ataji & Yushi Miura & Toshifumi Ise & Hiroki Tanaka, 2016. "A New Robust Decoupled Control of the Stator Active and Reactive Currents for Grid-Connected Doubly-Fed Induction Generators," Energies, MDPI, vol. 9(3), pages 1-18, March.
    4. Hooper, Tara & Beaumont, Nicola & Hattam, Caroline, 2017. "The implications of energy systems for ecosystem services: A detailed case study of offshore wind," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 230-241.
    5. Saad, Naggar H. & Sattar, Ahmed A. & Mansour, Abd El-Aziz M., 2015. "Low voltage ride through of doubly-fed induction generator connected to the grid using sliding mode control strategy," Renewable Energy, Elsevier, vol. 80(C), pages 583-594.
    6. Xiaoyang Sun & Baosheng Zhang & Xu Tang & Benjamin C. McLellan & Mikael Höök, 2016. "Sustainable Energy Transitions in China: Renewable Options and Impacts on the Electricity System," Energies, MDPI, vol. 9(12), pages 1-20, November.
    7. Duong, Minh Quan & Grimaccia, Francesco & Leva, Sonia & Mussetta, Marco & Ogliari, Emanuele, 2014. "Pitch angle control using hybrid controller for all operating regions of SCIG wind turbine system," Renewable Energy, Elsevier, vol. 70(C), pages 197-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang Zeng & Lin Yang & Yuchang Ling & Haoping Chen & Zhonglong Huang & Tao Yu & Bo Yang, 2018. "Smoothly Transitive Fixed Frequency Hysteresis Current Control Based on Optimal Voltage Space Vector," Energies, MDPI, vol. 11(7), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping He & Seyed Ali Arefifar & Congshan Li & Fushuan Wen & Yuqi Ji & Yukun Tao, 2019. "Enhancing Oscillation Damping in an Interconnected Power System with Integrated Wind Farms Using Unified Power Flow Controller," Energies, MDPI, vol. 12(2), pages 1-16, January.
    2. Yang, Bo & Yu, Tao & Shu, Hongchun & Dong, Jun & Jiang, Lin, 2018. "Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers," Applied Energy, Elsevier, vol. 210(C), pages 711-723.
    3. Solomon Feleke & Raavi Satish & Balamurali Pydi & Degarege Anteneh & Almoataz Y. Abdelaziz & Adel El-Shahat, 2023. "Damping of Frequency and Power System Oscillations with DFIG Wind Turbine and DE Optimization," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    4. Qu, Yang & Hooper, Tara & Austen, Melanie C. & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Development of a computable general equilibrium model based on integrated macroeconomic framework for ocean multi-use between offshore wind farms and fishing activities in Scotland," Applied Energy, Elsevier, vol. 332(C).
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Wilding, Thomas A. & Gill, Andrew B. & Boon, Arjen & Sheehan, Emma & Dauvin, Jean–Claude & Pezy, Jean-Philippe & O’Beirn, Francis & Janas, Urszula & Rostin, Liis & De Mesel, Ilse, 2017. "Turning off the DRIP (‘Data-rich, information-poor’) – rationalising monitoring with a focus on marine renewable energy developments and the benthos," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 848-859.
    7. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    8. Mohamed Zribi & Muthana Alrifai & Mohamed Rayan, 2017. "Sliding Mode Control of a Variable- Speed Wind Energy Conversion System Using a Squirrel Cage Induction Generator," Energies, MDPI, vol. 10(5), pages 1-21, May.
    9. Shukla, Rishabh Dev & Tripathi, Ramesh Kumar & Thakur, Padmanabh, 2017. "DC grid/bus tied DFIG based wind energy system," Renewable Energy, Elsevier, vol. 108(C), pages 179-193.
    10. Jun-Ho Huh & Jong Hyuk Park, 2020. "Decrepit Building Monitoring Solution for Zero Energy Building Management Using PLC and Android Application," Sustainability, MDPI, vol. 12(5), pages 1-26, March.
    11. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    12. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    13. Darvish Falehi, Ali, 2020. "An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    14. Tahir, Muhammad Faizan & Chen, Haoyong & Khan, Asad & Javed, Muhammad Sufyan & Cheema, Khalid Mehmood & Laraik, Noman Ali, 2020. "Significance of demand response in light of current pilot projects in China and devising a problem solution for future advancements," Technology in Society, Elsevier, vol. 63(C).
    15. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    16. Khaled Alshuaibi & Yi Zhao & Lin Zhu & Evangelos Farantatos & Deepak Ramasubramanian & Wenpeng Yu & Yilu Liu, 2022. "Forced Oscillation Grid Vulnerability Analysis and Mitigation Using Inverter-Based Resources: Texas Grid Case Study," Energies, MDPI, vol. 15(8), pages 1-13, April.
    17. Natalia A. Chernysheva & Victoria V. Perskaya & Alexander M. Petrov & Anna A. Bakulina, 2019. "Green Energy for Belt and Road Initiative: Economic Aspects Today and in the Future," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 178-185.
    18. Xueliang Yuan & Xiaoyu Zhang & Jiaxin Liang & Qingsong Wang & Jian Zuo, 2017. "The Development of Building Energy Conservation in China: A Review and Critical Assessment from the Perspective of Policy and Institutional System," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    19. Fu, Jianing & Yu, Xiangyang & Gao, Chunyang & Cui, Junda & Li, Youting, 2022. "Nonsingular fast terminal control for the DFIG-based variable-speed hydro-unit," Energy, Elsevier, vol. 244(PA).
    20. Ahmet Selim Pehlivan & Beste Bahceci & Kemalettin Erbatur, 2022. "Genetically Optimized Pitch Angle Controller of a Wind Turbine with Fuzzy Logic Design Approach," Energies, MDPI, vol. 15(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1082-:d:105795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.