IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v127y2018icp168-181.html
   My bibliography  Save this article

Experimental study of wake characteristics in tidal turbine arrays

Author

Listed:
  • Nuernberg, M.
  • Tao, L.

Abstract

For the successful deployment of large scale tidal turbine arrays occupying a large part of tidal channels, understanding the effects of wake interaction in densely spaced arrays is of importance. A comprehensive set of experiments has been conducted with scaled tidal turbines to investigate the resulting wake characteristics in a number of different staggered array configurations with up to four turbines on a designated support frame. Wake velocity deficits and turbulence intensities at a number of locations within and downstream of the array are presented and in addition the flow field recordings from Particle Image Velocimetry (PIV) measurements are presented for visual investigation of the resulting wake field and wake characteristics along the array centre line. The experiments show that lateral and longitudinal spacing variations of the individual devices vary the resulting flow field downstream of the array section significantly. Lateral spacing can be optimised to result in beneficial flow effects that accelerate the downstream wake recovery. Very close spacing however leads to significantly reduced velocity recovery. Longitudinal spacing shows less significant influence, especially for configurations with wide lateral distances. Differences in wake velocity deficit of up to 10% have been identified and suggest array wake recovery in and downstream of staggered sections, in areas of lower ambient turbulence levels, to be more significantly influenced by the lateral spacing especially towards the front rows of the array. With every additional array section the increasing turbulence intensity within the array is anticipated to reduce this effect.

Suggested Citation

  • Nuernberg, M. & Tao, L., 2018. "Experimental study of wake characteristics in tidal turbine arrays," Renewable Energy, Elsevier, vol. 127(C), pages 168-181.
  • Handle: RePEc:eee:renene:v:127:y:2018:i:c:p:168-181
    DOI: 10.1016/j.renene.2018.04.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118304610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.04.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Weichao & Atlar, Mehmet & Norman, Rosemary, 2017. "Detailed flow measurement of the field around tidal turbines with and without biomimetic leading-edge tubercles," Renewable Energy, Elsevier, vol. 111(C), pages 688-707.
    2. Mason-Jones, A. & O'Doherty, D.M. & Morris, C.E. & O'Doherty, T. & Byrne, C.B. & Prickett, P.W. & Grosvenor, R.I. & Owen, I. & Tedds, S. & Poole, R.J., 2012. "Non-dimensional scaling of tidal stream turbines," Energy, Elsevier, vol. 44(1), pages 820-829.
    3. Funke, S.W. & Farrell, P.E. & Piggott, M.D., 2014. "Tidal turbine array optimisation using the adjoint approach," Renewable Energy, Elsevier, vol. 63(C), pages 658-673.
    4. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines," Renewable Energy, Elsevier, vol. 68(C), pages 876-892.
    5. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine," Renewable Energy, Elsevier, vol. 66(C), pages 729-746.
    6. Ahmadian, Reza & Falconer, Roger A., 2012. "Assessment of array shape of tidal stream turbines on hydro-environmental impacts and power output," Renewable Energy, Elsevier, vol. 44(C), pages 318-327.
    7. Tedds, S.C. & Owen, I. & Poole, R.J., 2014. "Near-wake characteristics of a model horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 63(C), pages 222-235.
    8. Myers, L.E. & Bahaj, A.S., 2012. "An experimental investigation simulating flow effects in first generation marine current energy converter arrays," Renewable Energy, Elsevier, vol. 37(1), pages 28-36.
    9. Bahaj, A.S. & Batten, W.M.J. & McCann, G., 2007. "Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines," Renewable Energy, Elsevier, vol. 32(15), pages 2479-2490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.
    2. Nimal Sudhan Saravana Prabahar & Sam T. Fredriksson & Göran Broström & Björn Bergqvist, 2023. "Validation of Actuator Line Modeling and Large Eddy Simulations of Kite-Borne Tidal Stream Turbines against ADCP Observations," Energies, MDPI, vol. 16(16), pages 1-27, August.
    3. Di Felice, Fabio & Capone, Alessandro & Romano, Giovanni Paolo & Alves Pereira, Francisco, 2023. "Experimental study of the turbulent flow in the wake of a horizontal axis tidal current turbine," Renewable Energy, Elsevier, vol. 212(C), pages 17-34.
    4. Apsley, David D., 2024. "CFD simulation of tidal-stream turbines in a compact array," Renewable Energy, Elsevier, vol. 224(C).
    5. Chen, Long & Yao, Yu & Wang, Zhi-liang, 2020. "Development and validation of a prediction model for the multi-wake of tidal stream turbines," Renewable Energy, Elsevier, vol. 155(C), pages 800-809.
    6. Ahmadi, Mohammad H.B. & Yang, Zhiyin, 2020. "The evolution of turbulence characteristics in the wake of a horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 151(C), pages 1008-1015.
    7. Gauvin-Tremblay, Olivier & Dumas, Guy, 2022. "Hydrokinetic turbine array analysis and optimization integrating blockage effects and turbine-wake interactions," Renewable Energy, Elsevier, vol. 181(C), pages 851-869.
    8. Cosme, Diego L.S. & Veras, Rafael B. & Camacho, Ramiro G.R. & Saavedra, Osvaldo R. & Torres, Audálio & Andrade, Mauro M., 2023. "Modeling and assessing the potential of the Boqueirão channel for tidal exploration," Renewable Energy, Elsevier, vol. 219(P1).
    9. Lin, Jie & Lin, Binliang & Sun, Jian & Chen, Yaling, 2021. "Wake structure and mechanical energy transformation induced by a horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 171(C), pages 1344-1356.
    10. Chen, Yaling & Wang, Dayu & Wang, Dangwei, 2024. "The flow field within a staggered hydrokinetic turbine array," Renewable Energy, Elsevier, vol. 224(C).
    11. Craig Hill & Vincent S. Neary & Michele Guala & Fotis Sotiropoulos, 2020. "Performance and Wake Characterization of a Model Hydrokinetic Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter," Energies, MDPI, vol. 13(19), pages 1-21, October.
    12. Modali, Pranav K. & Vinod, Ashwin & Banerjee, Arindam, 2021. "Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays," Renewable Energy, Elsevier, vol. 177(C), pages 482-494.
    13. Federico Attene & Francesco Balduzzi & Alessandro Bianchini & M. Sergio Campobasso, 2020. "Using Experimentally Validated Navier-Stokes CFD to Minimize Tidal Stream Turbine Power Losses Due to Wake/Turbine Interactions," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    14. Gaurier, Benoît & Carlier, Clément & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2020. "Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance," Renewable Energy, Elsevier, vol. 148(C), pages 1150-1164.
    15. Ebdon, Tim & Allmark, Matthew J. & O’Doherty, Daphne M. & Mason-Jones, Allan & O’Doherty, Tim & Germain, Gregory & Gaurier, Benoit, 2021. "The impact of turbulence and turbine operating condition on the wakes of tidal turbines," Renewable Energy, Elsevier, vol. 165(P2), pages 96-116.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edmunds, Matt & Williams, Alison J. & Masters, Ian & Banerjee, Arindam & VanZwieten, James H., 2020. "A spatially nonlinear generalised actuator disk model for the simulation of horizontal axis wind and tidal turbines," Energy, Elsevier, vol. 194(C).
    2. Ian Masters & Alison Williams & T. Nick Croft & Michael Togneri & Matt Edmunds & Enayatollah Zangiabadi & Iain Fairley & Harshinie Karunarathna, 2015. "A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis," Energies, MDPI, vol. 8(8), pages 1-21, July.
    3. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
    4. Faizan, Muhammad & Badshah, Saeed & Badshah, Mujahid & Haider, Basharat Ali, 2022. "Performance and wake analysis of horizontal axis tidal current turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 184(C), pages 740-752.
    5. Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
    6. du Feu, R.J. & Funke, S.W. & Kramer, S.C. & Culley, D.M. & Hill, J. & Halpern, B.S. & Piggott, M.D., 2017. "The trade-off between tidal-turbine array yield and impact on flow: A multi-objective optimisation problem," Renewable Energy, Elsevier, vol. 114(PB), pages 1247-1257.
    7. Chen, Yaling & Lin, Binliang & Sun, Jian & Guo, Jinxi & Wu, Wenlong, 2019. "Hydrodynamic effects of the ratio of rotor diameter to water depth: An experimental study," Renewable Energy, Elsevier, vol. 136(C), pages 331-341.
    8. Maduka, Maduka & Li, Chi Wai, 2022. "Experimental evaluation of power performance and wake characteristics of twin flanged duct turbines in tandem under bi-directional tidal flows," Renewable Energy, Elsevier, vol. 199(C), pages 1543-1567.
    9. Sutherland, Duncan & Ordonez-Sanchez, Stephanie & Belmont, Michael R. & Moon, Ian & Steynor, Jeffrey & Davey, Thomas & Bruce, Tom, 2018. "Experimental optimisation of power for large arrays of cross-flow tidal turbines," Renewable Energy, Elsevier, vol. 116(PA), pages 685-696.
    10. Chen, Yaling & Lin, Binliang & Lin, Jie & Wang, Shujie, 2017. "Experimental study of wake structure behind a horizontal axis tidal stream turbine," Applied Energy, Elsevier, vol. 196(C), pages 82-96.
    11. De Dominicis, Michela & O'Hara Murray, Rory & Wolf, Judith, 2017. "Multi-scale ocean response to a large tidal stream turbine array," Renewable Energy, Elsevier, vol. 114(PB), pages 1160-1179.
    12. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.
    13. Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.
    14. Zhang, Jisheng & Zhou, Yudi & Lin, Xiangfeng & Wang, Guohui & Guo, Yakun & Chen, Hao, 2022. "Experimental investigation on wake and thrust characteristics of a twin-rotor horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 195(C), pages 701-715.
    15. Clemente Gotelli & Mirko Musa & Michele Guala & Cristián Escauriaza, 2019. "Experimental and Numerical Investigation of Wake Interactions of Marine Hydrokinetic Turbines," Energies, MDPI, vol. 12(16), pages 1-17, August.
    16. Stephen Nash & Agnieszka I. Olbert & Michael Hartnett, 2015. "Towards a Low-Cost Modelling System for Optimising the Layout of Tidal Turbine Arrays," Energies, MDPI, vol. 8(12), pages 1-19, November.
    17. Allmark, Matthew & Ellis, Robert & Lloyd, Catherine & Ordonez-Sanchez, Stephanie & Johannesen, Kate & Byrne, Carl & Johnstone, Cameron & O’Doherty, Tim & Mason-Jones, Allan, 2020. "The development, design and characterisation of a scale model Horizontal Axis Tidal Turbine for dynamic load quantification," Renewable Energy, Elsevier, vol. 156(C), pages 913-930.
    18. Su-jin Hwang & Chul H. Jo, 2019. "Tidal Current Energy Resource Distribution in Korea," Energies, MDPI, vol. 12(22), pages 1-15, November.
    19. Goss, Z.L. & Coles, D.S. & Kramer, S.C. & Piggott, M.D., 2021. "Efficient economic optimisation of large-scale tidal stream arrays," Applied Energy, Elsevier, vol. 295(C).
    20. Angus C. W. Creech & Alistair G. L. Borthwick & David Ingram, 2017. "Effects of Support Structures in an LES Actuator Line Model of a Tidal Turbine with Contra-Rotating Rotors," Energies, MDPI, vol. 10(5), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:127:y:2018:i:c:p:168-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.