IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8369-d426668.html
   My bibliography  Save this article

Public Awareness: What Climate Change Scientists Should Consider

Author

Listed:
  • Mohammad Rahimi

    (Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA)

Abstract

In this Opinion, the importance of public awareness to design solutions to mitigate climate change issues is highlighted. A large-scale acknowledgment of the climate change consequences has great potential to build social momentum. Momentum, in turn, builds motivation and demand, which can be leveraged to develop a multi-scale strategy to tackle the issue. The pursuit of public awareness is a valuable addition to the scientific approach to addressing climate change issues. The Opinion is concluded by providing strategies on how to effectively raise public awareness on climate change-related topics through an integrated, well-connected network of mavens (e.g., scientists) and connectors (e.g., social media influencers).

Suggested Citation

  • Mohammad Rahimi, 2020. "Public Awareness: What Climate Change Scientists Should Consider," Sustainability, MDPI, vol. 12(20), pages 1-4, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8369-:d:426668
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8369/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8369/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Miao & Rahimi, Mohammad & Kumar, Amit & Hariharan, Subrahmaniam & Choi, Wonyoung & Hatton, T. Alan, 2019. "Flue gas CO2 capture via electrochemically mediated amine regeneration: System design and performance," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olugbemi Mosunmola Aroke & Behzad Esmaeili & Sojung Claire Kim, 2021. "Impact of Climate Change on Transportation Infrastructure: Comparing Perception Differences between the US Public and the Department of Transportation (DOT) Professionals," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    2. Hara Moshou & Hara Drinia, 2023. "Climate Change Education and Preparedness of Future Teachers—A Review: The Case of Greece," Sustainability, MDPI, vol. 15(2), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadpour, Hossein & Cord-Ruwisch, Ralf & Pivrikas, Almantas & Ho, Goen, 2022. "Simple energy-efficient electrochemically-driven CO2 scrubbing for biogas upgrading," Renewable Energy, Elsevier, vol. 195(C), pages 274-282.
    2. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    3. Wu, Xiaomei & Mao, Yuanhao & Fan, Huifeng & Sultan, Sayd & Yu, Yunsong & Zhang, Zaoxiao, 2023. "Investigation on the performance of EDA-based blended solvents for electrochemically mediated CO2 capture," Applied Energy, Elsevier, vol. 349(C).
    4. Wu, Xiaomei & Fan, Huifeng & Mao, Yuanhao & Sharif, Maimoona & Yu, Yunsong & Zhang, Zaoxiao & Liu, Guangxin, 2022. "Systematic study of an energy efficient MEA-based electrochemical CO2 capture process: From mechanism to practical application," Applied Energy, Elsevier, vol. 327(C).
    5. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    6. Mao, Yuanhao & Sultan, Sayd & Fan, Huifeng & Yu, Yunsong & Wu, Xiaomei & Zhang, Zaoxiao, 2024. "Stability improvement of the advanced electrochemical CO2 capture process with high-capacity polyamine solvents," Applied Energy, Elsevier, vol. 369(C).
    7. Xing Li & Xunhua Zhao & Lingyu Zhang & Anmol Mathur & Yu Xu & Zhiwei Fang & Luo Gu & Yuanyue Liu & Yayuan Liu, 2024. "Redox-tunable isoindigos for electrochemically mediated carbon capture," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Shamair, Zufishan & Habib, Nitasha & Gilani, Mazhar Amjad & Khan, Asim Laeeq, 2020. "Theoretical and experimental investigation of CO2 separation from CH4 and N2 through supported ionic liquid membranes," Applied Energy, Elsevier, vol. 268(C).
    9. Zhen Xu & Grace Mapstone & Zeke Coady & Mengnan Wang & Tristan L. Spreng & Xinyu Liu & Davide Molino & Alexander C. Forse, 2024. "Enhancing electrochemical carbon dioxide capture with supercapacitors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Fan, Huifeng & Mao, Yuanhao & Gao, Jifeng & Tong, Shuyue & Yu, Yunsong & Wu, Xiaomei & Zhang, Zaoxiao, 2023. "Combined experimental and computational study for the electrode process of electrochemically mediated amine regeneration (EMAR) CO2 capture," Applied Energy, Elsevier, vol. 350(C).
    11. Adefarati Oloruntoba & Yongmin Zhang & Chang Samuel Hsu, 2022. "State-of-the-Art Review of Fluid Catalytic Cracking (FCC) Catalyst Regeneration Intensification Technologies," Energies, MDPI, vol. 15(6), pages 1-75, March.
    12. Wu, Xiaomei & Fan, Huifeng & Sharif, Maimoona & Yu, Yunsong & Wei, Keming & Zhang, Zaoxiao & Liu, Guangxin, 2021. "Electrochemically-mediated amine regeneration of CO2 capture: From electrochemical mechanism to bench-scale visualization study," Applied Energy, Elsevier, vol. 302(C).
    13. Chen, Hao & Dong, Sheying & Zhang, Yaojun & He, Panyang, 2022. "A comparative study on energy efficient CO2 capture using amine grafted solid sorbent: Materials characterization, isotherms, kinetics and thermodynamics," Energy, Elsevier, vol. 239(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8369-:d:426668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.