IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i19p8147-d423024.html
   My bibliography  Save this article

Recent Developments in Low iLUC Policies and Certification in the EU Biobased Economy

Author

Listed:
  • Beike Sumfleth

    (German Biomass Research Centre (DBFZ), 04347 Leipzig, Germany)

  • Stefan Majer

    (German Biomass Research Centre (DBFZ), 04347 Leipzig, Germany)

  • Daniela Thrän

    (German Biomass Research Centre (DBFZ), 04347 Leipzig, Germany
    Helmholtz Centre for Environmental Research (UFZ), 04318 Leipzig, Germany)

Abstract

The development of a sustainable biobased economy (BBE) in Europe is associated with several challenges. Amongst others, lessons learned from the development of the biofuel sector and the complex debate around land use change associated with a growing demand for biomass have to be considered when developing BBE policies. In that regard, strategies to identify and verify feedstocks with low potential risks for direct and indirect land use change (iLUC) impacts are of specific importance. Complementing existing efforts to assess iLUC with modelling activities, the European Commission (EC) has proposed a risk-based approach, aiming to differentiate high and low iLUC risk biomass. Amongst others, different additionality measures can be used to produce certified biomass with low iLUC risk. However, a comprehensive overview and analysis of these additionality measures and the challenges related to their integration in an integer verification approach is still missing. Therefore, we analyse European Union (EU) policies dealing with iLUC, iLUC risk assessment studies, certification approaches, and iLUC modelling studies to identify and develop additionality practices potentially applicable in certification and to show how the potential application of the proposed measures could be realised and verified in practice. We identified five potential practices for low iLUC risk biomass production, which are likely to be used by market actors. For each practice, we identified methods for the determination of low iLUC risk feedstock and products. Finally, our review includes recommendations for follow-up activities towards the actual implementation of additionality measures in biomass certification schemes.

Suggested Citation

  • Beike Sumfleth & Stefan Majer & Daniela Thrän, 2020. "Recent Developments in Low iLUC Policies and Certification in the EU Biobased Economy," Sustainability, MDPI, vol. 12(19), pages 1-34, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8147-:d:423024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/19/8147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/19/8147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jerome Dumortier & Dermot J. Hayes & Miguel Carriquiry & Fengxia Dong & Xiaodong Du & Amani Elobeid & Jacinto F. Fabiosa & Simla Tokgoz, 2011. "Sensitivity of Carbon Emission Estimates from Indirect Land-Use Change," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(4), pages 673-673.
    2. Witcover, Julie & Yeh, Sonia & Sperling, Daniel, 2013. "Policy options to address global land use change from biofuels," Energy Policy, Elsevier, vol. 56(C), pages 63-74.
    3. van Dam, J. & Junginger, M. & Faaij, A.P.C., 2010. "From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2445-2472, December.
    4. Erik Gawel & Nadine Pannicke & Nina Hagemann, 2019. "A Path Transition Towards a Bioeconomy—The Crucial Role of Sustainability," Sustainability, MDPI, vol. 11(11), pages 1-23, May.
    5. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    6. Michael Martin & Frida Røyne & Tomas Ekvall & Åsa Moberg, 2018. "Life Cycle Sustainability Evaluations of Bio-based Value Chains: Reviewing the Indicators from a Swedish Perspective," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    7. Ramirez-Contreras, Nidia Elizabeth & Faaij, André P.C., 2018. "A review of key international biomass and bioenergy sustainability frameworks and certification systems and their application and implications in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 460-478.
    8. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    9. Henders, Sabine & Ostwald, Madelene, 2014. "Accounting methods for international land-related leakage and distant deforestation drivers," Ecological Economics, Elsevier, vol. 99(C), pages 21-28.
    10. Martin Weiss & Juliane Haufe & Michael Carus & Miguel Brandão & Stefan Bringezu & Barbara Hermann & Martin K. Patel, 2012. "A Review of the Environmental Impacts of Biobased Materials," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 169-181, April.
    11. Acquaye, Adolf A. & Sherwen, Tomás & Genovese, Andrea & Kuylenstierna, Johan & Lenny Koh, SC & McQueen-Mason, Simon, 2012. "Biofuels and their potential to aid the UK towards achieving emissions reduction policy targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5414-5422.
    12. Scarlat, Nicolae & Dallemand, Jean-François, 2011. "Recent developments of biofuels/bioenergy sustainability certification: A global overview," Energy Policy, Elsevier, vol. 39(3), pages 1630-1646, March.
    13. Stefan Majer & Simone Wurster & David Moosmann & Luana Ladu & Beike Sumfleth & Daniela Thrän, 2018. "Gaps and Research Demand for Sustainability Certification and Standardisation in a Sustainable Bio-Based Economy in the EU," Sustainability, MDPI, vol. 10(7), pages 1-44, July.
    14. Delzeit, Ruth & Klepper, Gernot & Söder, Mareike, 2017. "Indirect land use change (iLUC) revisited: An evaluation of current policy proposals," Kiel Working Papers 2075, Kiel Institute for the World Economy (IfW Kiel).
    15. Nelson B. Villoria & Thomas W. Hertel, 2011. "Geography Matters: International Trade Patterns and the Indirect Land Use Effects of Biofuels," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(4), pages 919-935.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrico Balugani & Beike Sumfleth & Stefan Majer & Diego Marazza & Daniela Thrän, 2022. "Bridging Modeling and Certification to Evaluate Low-ILUC-Risk Practices for Biobased Materials with a User-Friendly Tool," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    2. Arnaldo Walter & Joaquim Seabra & Jansle Rocha & Marjorie Guarenghi & Nathália Vieira & Desirèe Damame & João Luís Santos, 2021. "Spatially Explicit Assessment of Suitable Conditions for the Sustainable Production of Aviation Fuels in Brazil," Land, MDPI, vol. 10(7), pages 1-22, July.
    3. Wu, Yazhen & Deppermann, Andre & Havlík, Petr & Frank, Stefan & Ren, Ming & Zhao, Hao & Ma, Lin & Fang, Chen & Chen, Qi & Dai, Hancheng, 2023. "Global land-use and sustainability implications of enhanced bioenergy import of China," Applied Energy, Elsevier, vol. 336(C).
    4. Arnaldo Walter & Joaquim Seabra & Jansle Rocha & Marjorie Guarenghi & Nathália Vieira & Desirèe Damame & João Luís Santos, 2021. "Spatially Explicit Assessment of the Feasibility of Sustainable Aviation Fuels Production in Brazil: Results of Three Case Studies," Energies, MDPI, vol. 14(16), pages 1-21, August.
    5. Alexandra Pagáč Mokrá & Jakub Pagáč & Zlatica Muchová & František Petrovič, 2020. "Analysis of Ownership Data from Consolidated Land Threatened by Water Erosion in the Vlára Basin, Slovakia," Sustainability, MDPI, vol. 13(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Forslund, Agneta & Gohin, Alexandre & Le Mouël, Chantal & Levert, Fabrice, 2014. "Biodiesel vs. ethanol, UE vs. US biofuels: So different in terms of LUC impact?," Working Papers 207810, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    2. Enrico Balugani & Beike Sumfleth & Stefan Majer & Diego Marazza & Daniela Thrän, 2022. "Bridging Modeling and Certification to Evaluate Low-ILUC-Risk Practices for Biobased Materials with a User-Friendly Tool," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    3. Janda, Karel & Kristoufek, Ladislav & Zilberman, David, "undated". "Biofuels: review of policies and impacts," CUDARE Working Papers 120415, University of California, Berkeley, Department of Agricultural and Resource Economics.
    4. Pawelzik, P. & Carus, M. & Hotchkiss, J. & Narayan, R. & Selke, S. & Wellisch, M. & Weiss, M. & Wicke, B. & Patel, M.K., 2013. "Critical aspects in the life cycle assessment (LCA) of bio-based materials – Reviewing methodologies and deriving recommendations," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 211-228.
    5. Milazzo, M.F. & Spina, F. & Cavallaro, S. & Bart, J.C.J., 2013. "Sustainable soy biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 806-852.
    6. Karel Janda & Ladislav Kristoufek & David Zilberman, 2012. "Biofuels: policies and impacts," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 58(8), pages 372-386.
    7. Yeh, Sonia & Witcover, Julie & Lade, Gabriel E. & Sperling, Daniel, 2016. "A review of low carbon fuel policies: Principles, program status and future directions," Energy Policy, Elsevier, vol. 97(C), pages 220-234.
    8. Correa, Diego F. & Beyer, Hawthorne L. & Fargione, Joseph E. & Hill, Jason D. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2019. "Towards the implementation of sustainable biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 250-263.
    9. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    10. Jianliang Wang & Yuru Yang & Yongmei Bentley & Xu Geng & Xiaojie Liu, 2018. "Sustainability Assessment of Bioenergy from a Global Perspective: A Review," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    11. Brinkman, Marnix L.J. & Wicke, Birka & Faaij, André P.C. & van der Hilst, Floor, 2019. "Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. García, Carlos A. & Manzini, Fabio & Islas, Jorge M., 2017. "Sustainability assessment of ethanol production from two crops in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1199-1207.
    13. Scarlat, Nicolae & Dallemand, Jean-François & Monforti-Ferrario, Fabio & Banja, Manjola & Motola, Vincenzo, 2015. "Renewable energy policy framework and bioenergy contribution in the European Union – An overview from National Renewable Energy Action Plans and Progress Reports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 969-985.
    14. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    15. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    16. Cansino, J.M. & Pablo-Romero, M.del P & Román, R. & Yñiguez, R., 2012. "Promotion of biofuel consumption in the transport sector: An EU-27 perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6013-6021.
    17. Amani Elobeid & Miguel Carriquiry & Jerome Dumortier & David Swenson & Dermot J. Hayes, 2021. "China‐U.S. trade dispute and its impact on global agricultural markets, the U.S. economy, and greenhouse gas emissions," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(3), pages 647-672, September.
    18. repec:lic:licosd:37115 is not listed on IDEAS
    19. Iyabo Adeola Olanrele & Adedoyin I. Lawal & Ezekiel Oseni & Ahmed Oluwatobi Adekunle & Bukola, B. Lawal-Adedoyin & Crystal O. Elleke & Racheal Ojeka-John & Henry Nweke-Love, 2020. "Accessing the Impacts of Contemporary Development in Biofuel on Agriculture, Energy and Domestic Economy: Evidence from Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 469-478.
    20. Piroli, Giuseppe & Rajcaniova, Miroslava & Ciaian, Pavel & Kancs, d׳Artis, 2015. "From a rise in B to a fall in C? SVAR analysis of environmental impact of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 921-930.
    21. Delzeit, Ruth & Klepper, Gernot & Söder, Mareike, 2016. "An evaluation of approaches for quantifying emissions from indirect land use change," Kiel Working Papers 2035, Kiel Institute for the World Economy (IfW Kiel).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8147-:d:423024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.