IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v96y2018icp460-478.html
   My bibliography  Save this article

A review of key international biomass and bioenergy sustainability frameworks and certification systems and their application and implications in Colombia

Author

Listed:
  • Ramirez-Contreras, Nidia Elizabeth
  • Faaij, André P.C.

Abstract

This document presents the results of an analysis of the key sustainability certification systems applicable to biomass and bioenergy. A review was made of the state-of-the-art sustainability frameworks at the international level. The improvements that have been made in these standards in recent years to reduce social, environmental and economic impacts were identified. In addition, it was determined how some of the initiatives analyzed were implemented in a country such as Colombia, where the establishment of a bio-based economy is being carried out. It was noted that most of the certification systems analyzed have been updated in the last two years. The main adjustments made to the standards are based on criteria developed by the European Commission through the Renewable Energy Directive (EU2015/1513). For environmental issues, it was found that the key update was the inclusion of the indirect land-use change (ILUC). Another key issue addressed is the obligation to calculate and publish the GHG emissions generated annually. Social issues have increased the focus on food security of the population regarding local areas of influence such as the price of the family food basket and food supply. Regarding economic issues, the requirement for a business plan is highlighted to contribute to the economic viability of a certified company. Colombia is one of the countries in the world where the basic conditions support a future sustainable bio-based products sector. Not only does the country have a large amount of land suitable for cultivation, but the land does not require the forests deforestation. However, it must be borne in mind that in a megadiverse country like Colombia, a joint effort (integration) is required between the application of strict laws for the protection of natural resources and the use of certification systems for sustainable products.

Suggested Citation

  • Ramirez-Contreras, Nidia Elizabeth & Faaij, André P.C., 2018. "A review of key international biomass and bioenergy sustainability frameworks and certification systems and their application and implications in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 460-478.
  • Handle: RePEc:eee:rensus:v:96:y:2018:i:c:p:460-478
    DOI: 10.1016/j.rser.2018.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118305677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Dam, J. & Junginger, M. & Faaij, A.P.C., 2010. "From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2445-2472, December.
    2. Herreras Martínez, Sara & van Eijck, Janske & Pereira da Cunha, Marcelo & Guilhoto, Joaquim J.M. & Walter, Arnaldo & Faaij, Andre, 2013. "Analysis of socio-economic impacts of sustainable sugarcane–ethanol production by means of inter-regional Input–Output analysis: Demonstrated for Northeast Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 290-316.
    3. van Dam, J. & Faaij, A.P.C. & Hilbert, J. & Petruzzi, H. & Turkenburg, W.C., 2009. "Large-scale bioenergy production from soybeans and switchgrass in Argentina: Part A: Potential and economic feasibility for national and international markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1710-1733, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bößner, Stefan & Xylia, Maria & Bilbao, Bibiana & Indriani, Siti N. & Laub, Moritz & Rahn, Eric & Virla, Luis D. & Johnson, Francis X., 2023. "Capacity gaps in land-based mitigation technologies and practices: A first stock take," Land Use Policy, Elsevier, vol. 134(C).
    2. Beike Sumfleth & Stefan Majer & Daniela Thrän, 2020. "Recent Developments in Low iLUC Policies and Certification in the EU Biobased Economy," Sustainability, MDPI, vol. 12(19), pages 1-34, October.
    3. Wadim Strielkowski & Elena Volkova & Luidmila Pushkareva & Dalia Streimikiene, 2019. "Innovative Policies for Energy Efficiency and the Use of Renewables in Households," Energies, MDPI, vol. 12(7), pages 1-17, April.
    4. Bethânia Ávila Rodrigues & Mariana Machado Fidelis Nascimento & Juliana Vitória Messias Bittencourt, 2021. "Mapping of the behavior of scientific publications since the decade of 1990 until the present day in the field of food and nutrition security," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2459-2483, March.
    5. Welfle, Andrew & Röder, Mirjam, 2022. "Mapping the sustainability of bioenergy to maximise benefits, mitigate risks and drive progress toward the Sustainable Development Goals," Renewable Energy, Elsevier, vol. 191(C), pages 493-509.
    6. Masum, Md Farhad Hossain & Dwivedi, Puneet & De La Torre, Rafael, 2021. "Assessing economic and environmental feasibility of wood-based electricity generation in South America: A case study from Colombia," Forest Policy and Economics, Elsevier, vol. 124(C).
    7. R. N. Ossei-Bremang & F. Kemausuor, 2021. "A decision support system for the selection of sustainable biomass resources for bioenergy production," Environment Systems and Decisions, Springer, vol. 41(3), pages 437-454, September.
    8. Henao, Rafael & Sarache, William, 2022. "Sustainable performance in manufacturing operations: The cumulative approach vs. trade-offs approach," International Journal of Production Economics, Elsevier, vol. 244(C).
    9. Azevedo, Susana Garrido & Sequeira, Tiago & Santos, Marcelo & Mendes, Luis, 2019. "Biomass-related sustainability: A review of the literature and interpretive structural modeling," Energy, Elsevier, vol. 171(C), pages 1107-1125.
    10. Silva, D.A.L. & Filleti, R.A.P. & Musule, R. & Matheus, T.T. & Freire, F., 2022. "A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    2. van der Hilst, F. & Lesschen, J.P. & van Dam, J.M.C. & Riksen, M. & Verweij, P.A. & Sanders, J.P.M. & Faaij, A.P.C., 2012. "Spatial variation of environmental impacts of regional biomass chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2053-2069.
    3. van Eijck, Janske & Batidzirai, Bothwell & Faaij, André, 2014. "Current and future economic performance of first and second generation biofuels in developing countries," Applied Energy, Elsevier, vol. 135(C), pages 115-141.
    4. van Eijck, Janske & Romijn, Henny & Balkema, Annelies & Faaij, André, 2014. "Global experience with jatropha cultivation for bioenergy: An assessment of socio-economic and environmental aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 869-889.
    5. Julia Tomei & Stella Semino & Helena Paul & Lilian Joensen & Mario Monti & Erling Jelsøe, 2010. "Soy production and certification: the case of Argentinean soy-based biodiesel," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(4), pages 371-394, April.
    6. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    7. Goh, Chun Sheng & Lee, Keat Teong, 2010. "A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 842-848, February.
    8. Hernandez-Perdomo, Elvis A. & Mun, Johnathan & Rocco S., Claudio M., 2017. "Active management in state-owned energy companies: Integrating a real options approach into multicriteria analysis to make companies sustainable," Applied Energy, Elsevier, vol. 195(C), pages 487-502.
    9. Sievers, Luisa & Schaffer, Axel, 2016. "The impacts of the German biofuel quota on sectoral domestic production and imports of the German economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 497-505.
    10. Viccaro, Mauro & Rocchi, Benedetto & Cozzi, Mario & Egging, Rudolf G. & Perez-Valdes, Gerardo A. & Romano, Severino, 2017. "Promoting the Bioelectricity Sector at the Regional Level: an Impact Analysis of Energy Tax Policy," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 261158, European Association of Agricultural Economists.
    11. Wang, Ce & Liao, Hua & Pan, Su-Yan & Zhao, Lu-Tao & Wei, Yi-Ming, 2014. "The fluctuations of China’s energy intensity: Biased technical change," Applied Energy, Elsevier, vol. 135(C), pages 407-414.
    12. Pacini, Henrique & Assunção, Lucas & van Dam, Jinke & Toneto, Rudinei, 2013. "The price for biofuels sustainability," Energy Policy, Elsevier, vol. 59(C), pages 898-903.
    13. Nakano, Satoshi & Arai, Sonoe & Washizu, Ayu, 2018. "Development and application of an inter-regional input-output table for analysis of a next generation energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2834-2842.
    14. Sarah L. Stattman & Aarti Gupta, 2015. "Negotiating Authority in Global Biofuel Governance: Brazil and the EU in the WTO," Global Environmental Politics, MIT Press, vol. 15(1), pages 41-59, February.
    15. Callejón-Ferre, A.J. & Velázquez-Martí, B. & López-Martínez, J.A. & Manzano-Agugliaro, F., 2011. "Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 948-955, February.
    16. Kluts, Ingeborg & Wicke, Birka & Leemans, Rik & Faaij, André, 2017. "Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 719-734.
    17. Seksan Papong & Norihiro Itsubo & Yuya Ono & Pomthong Malakul, 2016. "Development of Social Intensity Database Using Asian International Input–Output Table for Social Life Cycle Assessment," Sustainability, MDPI, vol. 8(11), pages 1-25, November.
    18. Jaung, Wanggi & Putzel, Louis & Bull, Gary Q. & Kozak, Robert & Elliott, Chris, 2016. "Forest Stewardship Council certification for forest ecosystem services: An analysis of stakeholder adaptability," Forest Policy and Economics, Elsevier, vol. 70(C), pages 91-98.
    19. Soloviy, Ihor & Melnykovych, Mariana & Björnsen Gurung, Astrid & Hewitt, Richard J. & Ustych, Radmila & Maksymiv, Lyudmyla & Brang, Peter & Meessen, Heino & Kaflyk, Mariia, 2019. "Innovation in the use of wood energy in the Ukrainian Carpathians: Opportunities and threats for rural communities," Forest Policy and Economics, Elsevier, vol. 104(C), pages 160-169.
    20. Brinkman, Marnix L.J. & da Cunha, Marcelo P. & Heijnen, Sanne & Wicke, Birka & Guilhoto, Joaquim J.M. & Walter, Arnaldo & Faaij, André P.C. & van der Hilst, Floor, 2018. "Interregional assessment of socio-economic effects of sugarcane ethanol production in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 347-362.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:96:y:2018:i:c:p:460-478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.