IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i19p8077-d422119.html
   My bibliography  Save this article

From Seafarers to E-farers: Maritime Cadets’ Perceptions Towards Seafaring Jobs in the Industry 4.0

Author

Listed:
  • Sohyun Jo

    (Division of Maritime Transportation Science, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Korea)

  • Enrico D’agostini

    (Department of International Logistics, Tongmyong University, Busan 48520, Korea)

  • Jun Kang

    (Division of Marine Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Korea)

Abstract

Efforts to implement the concept of autonomous transport in the shipping industry are currently underway with the introduction of Maritime Autonomous Surface Ship (MASS), which is expected to usher in a new paradigm in maritime trade. However, this requires a stable supply of highly qualified seafarers. Predicting the changes necessary for seafarer education and training in the MASS era is pivotal for the safe and efficient development and operation of autonomous ships. The present study conducted a survey using Q methodology on fourth year students of the Korea Maritime and Ocean University (KMOU), to examine their perceptions towards changes in ship organizations, and the competency of seafarers required in the MASS era. From the analysis, we extracted three unique clusters of cadets’ perceptions towards new competencies with the introduction of MASS: “the traditional seafarers’ centric role retainer”, the “ship organizational structure domain achiever”, and the “new technical competences builder”. The emerging findings can predict the educational needs and new competences of seafarers in the MASS era, as well as support managerial implications. These results are expected to serve in establishing the future direction of seafarer education and training in both private and public organisations.

Suggested Citation

  • Sohyun Jo & Enrico D’agostini & Jun Kang, 2020. "From Seafarers to E-farers: Maritime Cadets’ Perceptions Towards Seafaring Jobs in the Industry 4.0," Sustainability, MDPI, vol. 12(19), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8077-:d:422119
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/19/8077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/19/8077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Shiqi & Yang, Zaili, 2023. "Towards objective human performance measurement for maritime safety: A new psychophysiological data-driven machine learning method," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loebbing, Jonas, 2018. "An Elementary Theory of Endogenous Technical Change and Wage Inequality," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181603, Verein für Socialpolitik / German Economic Association.
    2. Basso, Henrique S. & Jimeno, Juan F., 2021. "From secular stagnation to robocalypse? Implications of demographic and technological changes," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 833-847.
    3. Iftekhairul Islam & Fahad Shaon, 2020. "If the Prospect of Some Occupations Are Stagnating With Technological Advancement? A Task Attribute Approach to Detect Employment Vulnerability," Papers 2001.02783, arXiv.org.
    4. Ayhan, Fatih & Elal, Onuray, 2023. "The IMPACTS of technological change on employment: Evidence from OECD countries with panel data analysis," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    5. Caroline Lloyd & Jonathan Payne, 2021. "Fewer jobs, better jobs? An international comparative study of robots and ‘routine’ work in the public sector," Industrial Relations Journal, Wiley Blackwell, vol. 52(2), pages 109-124, March.
    6. Gilberto Santos & Jose Carlos Sá & Maria João Félix & Luís Barreto & Filipe Carvalho & Manuel Doiro & Kristína Zgodavová & Miladin Stefanović, 2021. "New Needed Quality Management Skills for Quality Managers 4.0," Sustainability, MDPI, vol. 13(11), pages 1-22, May.
    7. Grinis, Inna, 2017. "The STEM requirements of "non-STEM" jobs: evidence from UK online vacancy postings and implications for skills & knowledge shortages," LSE Research Online Documents on Economics 85123, London School of Economics and Political Science, LSE Library.
    8. Zhang, Cheng & Weng, Xiyan, 2024. "Can broadband infrastructure construction promote equality of opportunity? Evidence from a quasi-natural experiment in China☆," Journal of Asian Economics, Elsevier, vol. 93(C).
    9. Eeman Almokdad & Chung Hun Lee, 2024. "Service Robots in the Workplace: Fostering Sustainable Collaboration by Alleviating Perceived Burdensomeness," Sustainability, MDPI, vol. 16(21), pages 1-17, November.
    10. van den Broek, Tijs & van Veenstra, Anne Fleur, 2018. "Governance of big data collaborations: How to balance regulatory compliance and disruptive innovation," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 330-338.
    11. Daniele Angelini, 2023. "Aging Population and Technology Adoption," Working Paper Series of the Department of Economics, University of Konstanz 2023-01, Department of Economics, University of Konstanz.
    12. Caitlin Allen Whitehead & Haroon Bhorat & Robert Hill & Tim Köhler & François Steenkamp, 2021. "The Potential Employment Implications of the Fourth Industrial Revolution Technologies: The Case of the Manufacturing, Engineering and Related Services Sector," Working Papers 202106, University of Cape Town, Development Policy Research Unit.
    13. Liu, Shasha & Wu, Yuhuan & Kong, Gaowen, 2024. "Politics and Robots," International Review of Financial Analysis, Elsevier, vol. 91(C).
    14. Sony, Michael & Aithal, Sreeramana, 2020. "Transforming Indian Engineering Industries through Industry 4.0: An Integrative Conceptual Analysis," MPRA Paper 102872, University Library of Munich, Germany.
    15. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    16. Thanos Fragkandreas, 2022. "Three Decades of Research on Innovation and Inequality: Causal Scenarios, Explanatory Factors, and Suggestions," Working Papers 60, Birkbeck Centre for Innovation Management Research, revised Feb 2022.
    17. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    18. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    19. Montse Gomendio, 2023. "The Level of Skills in Spain: How to Solve the Puzzle using International Surveys," Studies on the Spanish Economy eee2023-35, FEDEA.
    20. Juan F. Jimeno, 2019. "Fewer babies and more robots: economic growth in a new era of demographic and technological changes," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 10(2), pages 93-114, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8077-:d:422119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.