IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v233y2023ics0951832023000182.html
   My bibliography  Save this article

Towards objective human performance measurement for maritime safety: A new psychophysiological data-driven machine learning method

Author

Listed:
  • Fan, Shiqi
  • Yang, Zaili

Abstract

Human errors significantly contribute to transport accidents. Human performance measurement (HPM) is crucial to ensure human reliability and reduce human errors. However, how to address and reduce the subjective bias introduced by assessors in HPM and seafarer certification remains a key research challenge. This paper aims to develop a new psychophysiological data-driven machine learning method to realize the effective HPM in the maritime sector. It conducts experiments using a functional Near-Infrared Spectroscopy (fNIRS) technology and compares the performance of two groups in a maritime case (i.e. experienced and inexperienced seafarers in terms of different qualifications by certificates), via an Artificial Neural Network (ANN) model. The results have generated insightful implications and new contributions, including (1) the introduction of an objective criterion for assessors to monitor, assess, and support seafarer training and certification for maritime authorities; (2) the quantification of human response under specific missions, which serves as an index for a shipping company to evaluate seafarer reliability; (3) a supportive tool to evaluate human performance in complex emerging systems (e.g. Maritime Autonomous Surface Ship (MASS)) design for ship manufactures and shipbuilders.

Suggested Citation

  • Fan, Shiqi & Yang, Zaili, 2023. "Towards objective human performance measurement for maritime safety: A new psychophysiological data-driven machine learning method," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:reensy:v:233:y:2023:i:c:s0951832023000182
    DOI: 10.1016/j.ress.2023.109103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023000182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Jiabei & Tian, Yi & Wu, Lifeng, 2022. "A hybrid data-driven method for rapid prediction of lithium-ion battery capacity," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Chang, Chia-Hsun & Kontovas, Christos & Yu, Qing & Yang, Zaili, 2021. "Risk assessment of the operations of maritime autonomous surface ships," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    3. Sotiralis, P. & Ventikos, N.P. & Hamann, R. & Golyshev, P. & Teixeira, A.P., 2016. "Incorporation of human factors into ship collision risk models focusing on human centred design aspects," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 210-227.
    4. Sohyun Jo & Enrico D’agostini & Jun Kang, 2020. "From Seafarers to E-farers: Maritime Cadets’ Perceptions Towards Seafaring Jobs in the Industry 4.0," Sustainability, MDPI, vol. 12(19), pages 1-18, September.
    5. Zhang, Mingyang & Kujala, Pentti & Hirdaris, Spyros, 2022. "A machine learning method for the evaluation of ship grounding risk in real operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Kim, Do-Hoon, 2020. "Human factors influencing the ship operator's perceived risk in the last moment of collision encounter," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    7. Yildiz, Serdar & Uğurlu, Özkan & Wang, Jin & Loughney, Sean, 2021. "Application of the HFACS-PV approach for identification of human and organizational factors (HOFs) influencing marine accidents," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    8. Yang, Yang & Li, Suzhen & Zhang, Pengcheng, 2022. "Data-driven accident consequence assessment on urban gas pipeline network based on machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Elİf Bal BeşİkÇİ & Leyla Tavacıoğlu & özcan Arslan, 2016. "The subjective measurement of seafarers’ fatigue levels and mental symptoms," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(3), pages 329-343, April.
    10. Muhammad Juned Akhtar & Ingrid Bouwer Utne, 2015. "Common patterns in aggregated accident analysis charts from human fatigue-related groundings and collisions at sea," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(2), pages 186-206, February.
    11. Fan, Shiqi & Blanco-Davis, Eduardo & Yang, Zaili & Zhang, Jinfen & Yan, Xinping, 2020. "Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiao, Yidan & Gao, Xinwei & Ma, Lin & Chen, Dengkai, 2024. "Dynamic human error risk assessment of group decision-making in extreme cooperative scenario," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Munim, Ziaul Haque & Sørli, Michael André & Kim, Hyungju & Alon, Ilan, 2024. "Predicting maritime accident risk using Automated Machine Learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    3. Fan, Shiqi & Yang, Zaili, 2024. "Accident data-driven human fatigue analysis in maritime transport using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Sun, Bin & Li, Yan & Zhang, Yangyang & Guo, Tong, 2024. "Multi-source heterogeneous data fusion prediction technique for the utility tunnel fire detection," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    5. Ren, Xin & Nane, Gabriela F. & Terwel, Karel C. & van Gelder, Pieter H.A.J.M., 2024. "Measuring the impacts of human and organizational factors on human errors in the Dutch construction industry using structured expert judgement," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    6. Yu, Yuerong & Liu, Kezhong & Fu, Shanshan & Chen, Jihong, 2024. "Framework for process risk analysis of maritime accidents based on resilience theory: A case study of grounding accidents in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Shanshan & Yu, Yuerong & Chen, Jihong & Xi, Yongtao & Zhang, Mingyang, 2022. "A framework for quantitative analysis of the causation of grounding accidents in arctic shipping," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Fan, Shiqi & Yang, Zaili, 2024. "Accident data-driven human fatigue analysis in maritime transport using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Cheng, Tingting & Veitch, Erik A. & Utne, Ingrid Bouwer & Ramos, Marilia A. & Mosleh, Ali & Alsos, Ole Andreas & Wu, Bing, 2024. "Analysis of human errors in human-autonomy collaboration in autonomous ships operations through shore control experimental data," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    4. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Kaptan, Mehmet & Uğurlu, Özkan & Wang, Jin, 2021. "The effect of nonconformities encountered in the use of technology on the occurrence of collision, contact and grounding accidents," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Abreu, Danilo T.M.P. & Maturana, Marcos C. & Droguett, Enrique Lopez & Martins, Marcelo R., 2022. "Human reliability analysis of conventional maritime pilotage operations supported by a prospective model," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Ung, S.T., 2021. "Navigation Risk estimation using a modified Bayesian Network modeling-a case study in Taiwan," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Zhang, Jinfeng & Jin, Mei & Wan, Chengpeng & Dong, Zhijie & Wu, Xiaohong, 2024. "A Bayesian network-based model for risk modeling and scenario deduction of collision accidents of inland intelligent ships," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Lan, He & Ma, Xiaoxue & Qiao, Weiliang & Ma, Laihao, 2022. "On the causation of seafarers’ unsafe acts using grounded theory and association rule," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    12. Wang, Hong & Chen, Ning & Wu, Bing & Guedes Soares, C., 2024. "Human and organizational factors analysis of collision accidents between merchant ships and fishing vessels based on HFACS-BN model," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    13. Yang, Zhisen & Wan, Chengpeng & Yang, Zaili & Yu, Qing, 2021. "Using Bayesian network-based TOPSIS to aid dynamic port state control detention risk control decision," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Obeng, Francis & Domeh, Daniel & Khan, Faisal & Bose, Neil & Sanli, Elizabeth, 2024. "An operational risk management approach for small fishing vessel," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    15. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Sezer, Sukru Ilke & Camliyurt, Gokhan & Aydin, Muhmmet & Akyuz, Emre & Gardoni, Paolo, 2023. "A bow-tie extended D-S evidence-HEART modelling for risk analysis of cargo tank cracks on oil/chemical tanker," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Li, Huanhuan & Ekere, Nduka & Yang, Zaili, 2023. "Multi-scale collision risk estimation for maritime traffic in complex port waters," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    19. Taleb-Berrouane, Mohammed & Khan, Faisal & Hawboldt, Kelly, 2021. "Corrosion risk assessment using adaptive bow-tie (ABT) analysis," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    20. Domeh, Vindex & Obeng, Francis & Khan, Faisal & Bose, Neil & Sanli, Elizabeth, 2023. "An operational risk awareness tool for small fishing vessels operating in harsh environment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:233:y:2023:i:c:s0951832023000182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.