IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p7110-d406651.html
   My bibliography  Save this article

Self-Learning Algorithm to Predict Indoor Temperature and Cooling Demand from Smart WiFi Thermostat in a Residential Building

Author

Listed:
  • Kefan Huang

    (Department of Mechanical & Aerospace Engineering, University of Dayton, Dayton, OH 45469-0238, USA)

  • Kevin P. Hallinan

    (Department of Mechanical & Aerospace Engineering, University of Dayton, Dayton, OH 45469-0238, USA)

  • Robert Lou

    (Department of Mechanical & Aerospace Engineering, University of Dayton, Dayton, OH 45469-0238, USA)

  • Abdulrahman Alanezi

    (Department of Mechanical & Aerospace Engineering, University of Dayton, Dayton, OH 45469-0238, USA)

  • Salahaldin Alshatshati

    (Department of Mechanical & Aerospace Engineering, University of Dayton, Dayton, OH 45469-0238, USA)

  • Qiancheng Sun

    (Department of Mechanical & Aerospace Engineering, University of Dayton, Dayton, OH 45469-0238, USA)

Abstract

Smart WiFi thermostats have moved well beyond the function they were originally designed for; namely, controlling heating and cooling comfort in buildings. They are now also learning from occupant behaviors and permit occupants to control their comfort remotely. This research seeks to go beyond this state of the art by utilizing smart WiFi thermostat data in residences to develop dynamic predictive models for room temperature and cooling/heating demand. These models can then be used to estimate the energy savings from new thermostat temperature schedules and estimate peak load reduction achievable from maintaining a residence in a minimum thermal comfort condition. Back Propagation Neural Network (BPNN), Long-Short Term Memory (LSTM), and Encoder-Decoder LSTM dynamic models are explored. Results demonstrate that LSTM outperforms BPNN and Encoder-Decoder LSTM approach, yielding and a MAE error of 0.5 °C, equal to the resolution error of the measured temperature. Additionally, the models developed are shown to be highly accurate in predicting savings from aggressive thermostat set point schedules, yielding deep reduction of up to 14.3% for heating and cooling, as well as significant energy reduction from curtailed thermal comfort in response to a high demand event.

Suggested Citation

  • Kefan Huang & Kevin P. Hallinan & Robert Lou & Abdulrahman Alanezi & Salahaldin Alshatshati & Qiancheng Sun, 2020. "Self-Learning Algorithm to Predict Indoor Temperature and Cooling Demand from Smart WiFi Thermostat in a Residential Building," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7110-:d:406651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/7110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/7110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Cheng & Xiao, Fu & Zhao, Yang, 2017. "A short-term building cooling load prediction method using deep learning algorithms," Applied Energy, Elsevier, vol. 195(C), pages 222-233.
    2. Janet L. Reyna & Mikhail V. Chester, 2017. "Energy efficiency to reduce residential electricity and natural gas use under climate change," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    3. Robert Lou & Kevin P. Hallinan & Kefan Huang & Timothy Reissman, 2020. "Smart Wifi Thermostat-Enabled Thermal Comfort Control in Residences," Sustainability, MDPI, vol. 12(5), pages 1-15, March.
    4. Nivine Attoue & Isam Shahrour & Rafic Younes, 2018. "Smart Building: Use of the Artificial Neural Network Approach for Indoor Temperature Forecasting," Energies, MDPI, vol. 11(2), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulelah D. Alhamayani & Qiancheng Sun & Kevin P. Hallinan, 2022. "An Improved Method to Estimate Savings from Thermal Comfort Control in Residences from Smart Wi-Fi Thermostat Data," Clean Technol., MDPI, vol. 4(2), pages 1-12, May.
    2. Abdulrahman Alanezi & Kevin P. Hallinan & Kefan Huang, 2021. "Automated Residential Energy Audits Using a Smart WiFi Thermostat-Enabled Data Mining Approach," Energies, MDPI, vol. 14(9), pages 1-23, April.
    3. Abdulrahman Alanezi & Kevin P. Hallinan & Rodwan Elhashmi, 2021. "Using Smart-WiFi Thermostat Data to Improve Prediction of Residential Energy Consumption and Estimation of Savings," Energies, MDPI, vol. 14(1), pages 1-16, January.
    4. Stefano Villa & Claudio Sassanelli, 2020. "The Data-Driven Multi-Step Approach for Dynamic Estimation of Buildings’ Interior Temperature," Energies, MDPI, vol. 13(24), pages 1-23, December.
    5. Song, Jiancai & Bian, Tianxiang & Xue, Guixiang & Wang, Hanyu & Shen, Xingliang & Wu, Xiangdong, 2023. "Short-term forecasting model for residential indoor temperature in DHS based on sequence generative adversarial network," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Villa & Claudio Sassanelli, 2020. "The Data-Driven Multi-Step Approach for Dynamic Estimation of Buildings’ Interior Temperature," Energies, MDPI, vol. 13(24), pages 1-23, December.
    2. Yue, Naihua & Caini, Mauro & Li, Lingling & Zhao, Yang & Li, Yu, 2023. "A comparison of six metamodeling techniques applied to multi building performance vectors prediction on gymnasiums under multiple climate conditions," Applied Energy, Elsevier, vol. 332(C).
    3. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    4. Martín Pensado-Mariño & Lara Febrero-Garrido & Pablo Eguía-Oller & Enrique Granada-Álvarez, 2021. "Feasibility of Different Weather Data Sources Applied to Building Indoor Temperature Estimation Using LSTM Neural Networks," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    5. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    6. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    7. Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).
    8. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
    9. Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
    10. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    11. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    12. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.
    13. Wei, Ziqing & Zhang, Tingwei & Yue, Bao & Ding, Yunxiao & Xiao, Ran & Wang, Ruzhu & Zhai, Xiaoqiang, 2021. "Prediction of residential district heating load based on machine learning: A case study," Energy, Elsevier, vol. 231(C).
    14. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    15. Robertson, John & Riggs, Brian & Islam, Kazi & Ji, Yaping Vera & Spitler, Christopher M. & Gupta, Naman & Krut, Dimitri & Ermer, Jim & Miller, Fletcher & Codd, Daniel & Escarra, Matthew, 2019. "Field testing of a spectrum-splitting transmissive concentrator photovoltaic module," Renewable Energy, Elsevier, vol. 139(C), pages 806-814.
    16. Dana-Mihaela Petroșanu & George Căruțașu & Nicoleta Luminița Căruțașu & Alexandru Pîrjan, 2019. "A Review of the Recent Developments in Integrating Machine Learning Models with Sensor Devices in the Smart Buildings Sector with a View to Attaining Enhanced Sensing, Energy Efficiency, and Optimal B," Energies, MDPI, vol. 12(24), pages 1-64, December.
    17. Wang, Xinlin & Yao, Zhihao & Papaefthymiou, Marios, 2023. "A real-time electrical load forecasting and unsupervised anomaly detection framework," Applied Energy, Elsevier, vol. 330(PA).
    18. Massidda, Luca & Marrocu, Marino, 2023. "Total and thermal load forecasting in residential communities through probabilistic methods and causal machine learning," Applied Energy, Elsevier, vol. 351(C).
    19. Marek Borowski & Klaudia Zwolińska & Marcin Czerwiński, 2022. "An Experimental Study of Thermal Comfort and Indoor Air Quality—A Case Study of a Hotel Building," Energies, MDPI, vol. 15(6), pages 1-18, March.
    20. Ling, Jihong & Zhang, Bingyang & Dai, Na & Xing, Jincheng, 2023. "Coupling input feature construction methods and machine learning algorithms for hourly secondary supply temperature prediction," Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7110-:d:406651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.