IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics0306261923009236.html
   My bibliography  Save this article

Short-term forecasting model for residential indoor temperature in DHS based on sequence generative adversarial network

Author

Listed:
  • Song, Jiancai
  • Bian, Tianxiang
  • Xue, Guixiang
  • Wang, Hanyu
  • Shen, Xingliang
  • Wu, Xiangdong

Abstract

With the rapid development of the economy and the continuous improvement of people's living conditions, building thermal comfort has become one of the essential objectives of the development of the smart district heating system (SDHS). The accurate prediction approach of indoor temperature is the primary prerequisite and basis for achieving optimal thermal comfort regulation. However, the buildings' indoor temperature has significant thermal inertia and nonlinear characteristics due to the influence of multiple factors. The traditional time-series prediction algorithm can hardly accurately extract the indoor temperature variation pattern and cannot fully meet the satisfactory regulation requirements of SDHS. Therefore, an indoor temperature prediction model based on a sequence generative adversarial network (SGAN) is proposed in this paper. The new SGAN algorithm is trained by iterative adversarial training of the generator and discriminator, and the LSTM model built into the generator can effectively extract the high-level nonlinear abstract features of indoor temperature to achieve its accurate prediction. The detailed comparative experimental results show that the proposed indoor forecasting algorithm based on SGAN has obvious performance advantages compared to state-of-the-art algorithms, such as random forest regression (RFR), gradient boosting regression (GBR), support vector regression (SVR), adaptive boost (AdaBoost), multilayer perception (MLP), and long-short term memory(LSTM). The SGAN's mean absolute percentage error (MAPE) index reaches 2.3%.

Suggested Citation

  • Song, Jiancai & Bian, Tianxiang & Xue, Guixiang & Wang, Hanyu & Shen, Xingliang & Wu, Xiangdong, 2023. "Short-term forecasting model for residential indoor temperature in DHS based on sequence generative adversarial network," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009236
    DOI: 10.1016/j.apenergy.2023.121559
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121559?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francisco Zamora-Martínez & Pablo Romeu & Paloma Botella-Rocamora & Juan Pardo, 2013. "Towards Energy Efficiency: Forecasting Indoor Temperature via Multivariate Analysis," Energies, MDPI, vol. 6(9), pages 1-21, September.
    2. Sun, Chunhua & Chen, Jiali & Cao, Shanshan & Gao, Xiaoyu & Xia, Guoqiang & Qi, Chengying & Wu, Xiangdong, 2021. "A dynamic control strategy of district heating substations based on online prediction and indoor temperature feedback," Energy, Elsevier, vol. 235(C).
    3. Zhang, Lipeng & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Li, Hongwei & Li, Xiaopeng & Svendsen, Svend, 2016. "Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level," Energy, Elsevier, vol. 107(C), pages 431-442.
    4. Petri Hietaharju & Mika Ruusunen & Kauko Leiviskä, 2018. "A Dynamic Model for Indoor Temperature Prediction in Buildings," Energies, MDPI, vol. 11(6), pages 1-20, June.
    5. Kamal Pandey & Bhaskar Basu & Sandipan Karmakar, 2021. "An Efficient Decision-Making Approach for Short Term Indoor Room Temperature Forecasting in Smart Environment: Evidence from India," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 733-774, March.
    6. Kefan Huang & Kevin P. Hallinan & Robert Lou & Abdulrahman Alanezi & Salahaldin Alshatshati & Qiancheng Sun, 2020. "Self-Learning Algorithm to Predict Indoor Temperature and Cooling Demand from Smart WiFi Thermostat in a Residential Building," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    7. Nivine Attoue & Isam Shahrour & Rafic Younes, 2018. "Smart Building: Use of the Artificial Neural Network Approach for Indoor Temperature Forecasting," Energies, MDPI, vol. 11(2), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue, Lin & Zhang, Yao & Wang, Jianxue & Li, Haotian & Li, Fangshi, 2024. "Privacy-preserving multi-level co-regulation of VPPs via hierarchical safe deep reinforcement learning," Applied Energy, Elsevier, vol. 371(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhikai & Zhang, Huan & Wang, Yaran & You, Shijun & Dai, Ting & Jiang, Yan, 2024. "Evaluation of the controllability of multi-family building with radiator heating systems: A frequency domain approach," Energy, Elsevier, vol. 294(C).
    2. Lara Ramadan & Isam Shahrour & Hussein Mroueh & Fadi Hage Chehade, 2021. "Use of Machine Learning Methods for Indoor Temperature Forecasting," Future Internet, MDPI, vol. 13(10), pages 1-18, September.
    3. Petri Hietaharju & Mika Ruusunen & Kauko Leiviskä, 2018. "A Dynamic Model for Indoor Temperature Prediction in Buildings," Energies, MDPI, vol. 11(6), pages 1-20, June.
    4. Martín Pensado-Mariño & Lara Febrero-Garrido & Pablo Eguía-Oller & Enrique Granada-Álvarez, 2021. "Feasibility of Different Weather Data Sources Applied to Building Indoor Temperature Estimation Using LSTM Neural Networks," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    5. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Li, Hui & Ni, Long & Yao, Yang & Sun, Cheng, 2020. "Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses," Renewable Energy, Elsevier, vol. 146(C), pages 25-37.
    8. Zhou, Chaohui & Ni, Long & Li, Jun & Lin, Zeri & Wang, Jun & Fu, Xuhui & Yao, Yang, 2019. "Air-source heat pump heating system with a new temperature and hydraulic-balance control strategy: A field experiment in a teaching building," Renewable Energy, Elsevier, vol. 141(C), pages 148-161.
    9. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    10. Stefano Villa & Claudio Sassanelli, 2020. "The Data-Driven Multi-Step Approach for Dynamic Estimation of Buildings’ Interior Temperature," Energies, MDPI, vol. 13(24), pages 1-23, December.
    11. Tommy Rosén & Louise Ödlund, 2019. "Active Management of Heat Customers Towards Lower District Heating Return Water Temperature," Energies, MDPI, vol. 12(10), pages 1-20, May.
    12. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Chatzis, Georgios V. & Biskas, Pandelis N. & Keranidis, Stratos D., 2021. "Minimization of natural gas consumption of domestic boilers with convolutional, long-short term memory neural networks and genetic algorithm," Applied Energy, Elsevier, vol. 299(C).
    13. Dana-Mihaela Petroșanu & George Căruțașu & Nicoleta Luminița Căruțașu & Alexandru Pîrjan, 2019. "A Review of the Recent Developments in Integrating Machine Learning Models with Sensor Devices in the Smart Buildings Sector with a View to Attaining Enhanced Sensing, Energy Efficiency, and Optimal B," Energies, MDPI, vol. 12(24), pages 1-64, December.
    14. Ling, Jihong & Zhang, Bingyang & Dai, Na & Xing, Jincheng, 2023. "Coupling input feature construction methods and machine learning algorithms for hourly secondary supply temperature prediction," Energy, Elsevier, vol. 278(C).
    15. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    16. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    17. Ding, Shixing & Gu, Wei & Lu, Shuai & Yu, Ruizhi & Sheng, Lina, 2022. "Cyber-attack against heating system in integrated energy systems: Model and propagation mechanism," Applied Energy, Elsevier, vol. 311(C).
    18. López-Pérez, Luis Adrián & Flores-Prieto, José Jassón, 2023. "Adaptive thermal comfort approach to save energy in tropical climate educational building by artificial intelligence," Energy, Elsevier, vol. 263(PA).
    19. Meng, Xiangxin & Liu, Yan & Wang, Shangyu & Chen, Feiyu & Cao, Qimeng & Yang, Liu, 2022. "A fast solar architecture design method towards zero heating energy: A SHF-SLR-based model and its parameters," Energy, Elsevier, vol. 258(C).
    20. Alejandra Aversa & Luis Ballestero & Miguel Chen Austin, 2022. "Highlighting the Probabilistic Behavior of Occupants’ Preferences in Energy Consumption by Integrating a Thermal Comfort Controller in a Tropical Climate," Sustainability, MDPI, vol. 14(15), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.